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Foreword

This proceedings includes the papers presented at the 11th Biennial International Conference on Arti�cial Evo-
lution, EA1 2013, held in Bordeaux (France). Previous EA editions took place in Angers (2011), Strasbourg (2009),
Tours (2007), Lille (2005), Marseille (2003), Le Creusot (2001), Dunkerque (1999), Nimes (1997), Brest (1995), and
Toulouse (1994).

Authors had been invited to present original work relevant to Arti�cial Evolution, including, but not limited
to: Evolutionary Computation, Evolutionary Optimization, Co-evolution, Arti�cial Life, Population Dynamics,
Theory, Algorithmics and Modeling, Implementations, Application of Evolutionary Paradigms to the Real World
(industry, biosciences, ...), other Biologically-Inspired Paradigms (Swarm, Arti�cial Ants, Arti�cial Immune Sys-
tems, Cultural Algorithms...), Memetic Algorithms, Multi-Objective Optimization, Constraint Handling, Parallel
Algorithms, Dynamic Optimization, Machine Learning and hybridization with other soft computing techniques.

Each submitted paper has been reviewed by four members of the International Program Committee. Among
the 39 submissions received, 20 papers have been selected for oral presentation and 2 other papers for poster
presentation. As for the previous editions (see LNCS volumes 1063, 1363, 1829, 2310, 2936, 3871, 4926, 5975 and
7401), a selection of the best papers presented at the conference and further revised will be published as a volume
of Springer's LNCS series.

We would like to express our sincere gratitude to our invited speakers: Jean-Louis Deneubourg and William
Langdon.

The success of the conference resulted from the input of many people to whom I would like to express my
appreciation: The members of Program Committee and the secondary reviewers for their careful reviews that
ensure the quality of the selected papers and of the conference. The members of the Organizing Committee
for their e�cient work and dedication assisted by Laetitia Grimaldi, Nicolas Jahier, Cathy Metivier and Ingrid
Rochel. The members of the Steering Committee for their valuable assistance. Aurélien Dumez for his support
on the administration of the website. Mélanie Toto for the design and the visual identity of the conference. Marc
Schoenauer for his support with the MyReview system. Laetitia Jourdan, Lola Kovacic and Marion Bachelet for
the publicity. Marc-Michel Corsini for the edition of the proceedings. Sebastien Verel for the registrations. Evelyne
Lutton and Nicolas Monmarché for the organization of the Side Event: "Art and Arti�cial Evolution", and the
artists. Laurent Vezard for his support.

I take this opportunity to thank the di�erent partners whose �nancial and material support contributed to the
organization of the conference: Université Bordeaux 1, Université Bordeaux Segalen, Région Aquitaine, La CUB,
CNRS, IMB, INRIA, UFR Sciences et Modélisation.

Last but not least, I thank all the authors who have submitted their research papers to the conference, and the
authors of accepted papers who attend the conference to present their work. Thank you all.

Pierrick Legrand

EA 2013 Chair
University of Bordeaux,

Mathematic Institute of Bordeaux,
INRIA Bordeaux Sud-Ouest, France

1As for previous editions of the conference, the EA acronym is based on the original French name �Évolution Arti�cielle�.
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Memetic algorithm with an efficient split
procedure for the Team Orienteering Problem

with Time Windows

Rym Nesrine GUIBADJ1 and Aziz MOUKRIM1

Université de Technologie de Compiègne
Laboratoire Heudiasyc, UMR 7253 CNRS, 60205 Compiègne, France

{rym-nesrine.guibadj,aziz.moukrim}@hds.utc.fr

Abstract. The Team Orienteering Problem (TOP) is a variant of the
vehicle routing problem. Given a set of vertices, each one associated with
a score, the goal of TOP is to maximize the sum of the scores collected
by a fixed number of vehicles within a certain prescribed time limit.
More particularly, the Team Orienteering Problem with Time Windows
(TOPTW) imposes the period of time of customer availability as a con-
straint to assimilate the real world situations. In this paper, we present a
memetic algorithm for TOPTW based on the application of split strat-
egy to evaluate an individual. The effectiveness of the proposed MA is
shown by many experiments conducted on benchmark problem instances
available in the literature. The computational results indicate that the
proposed algorithm competes with the heuristic approaches present in
the literature and improves best known solutions in 101 instances.

1 Introduction

The Orienteering Problem (OP) was firstly introduced by Tsiligirides [24]. The
roots of this problem trace back to the pioneering work of Golden et al. [7] who
proved that the OP is NP-hard and used it to formulate and solve the home fuel
delivery problem. The name ”Orienteering Problem” originates from the sport
game of orienteering described in [3]. Later, a new variant of the problem called
Team Orienteering Problem (TOP) was introduced since it is widely seen in
many real life situations, like for example the routing of technicians [21] and fuel
delivery problems [7]. Many heuristics have been successfully applied to TOP.
There are four methods that can be considered as the state-of-the-art algorithms
in the literature: a variable neighborhood search proposed by Archetti et al. [1], a
memetic algorithm [2], a path relinking approach [20] and a PSO-based memetic
algorithm [5]. The survey of Vansteenwegen et al. [25] gives a review of the most
important contributions on the orienteering literature.

Recently, the Orienteering Problem with Time Windows (OPTW) and the
Team Orienteering Problem with Time Windows (TOPTW) have been the in-
terest of many researchers. They are considered as the generalization of OP and
TOP with the additional time constraints. In these problems, the service of a
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customer must be started within a time window [ei, li] defined by customer i.
The vehicle cannot arrive earlier than time ei and no later than time li. A vehicle
arriving earlier than the earliest service time of a customer will incur waiting
time. The first who considered the time windows in the OP were Kantor and
Rosenwein [8]. They solved the problem with a tree heuristic that was more effi-
cient than the classical insertion heuristics. The only exact method that we found
was developed by Righini and Salani [17]. The computational time required by
their method to solve large problem instances was very expensive. Therefore,
most of the researchers focus on developing approximate methods. Montemanni
and Gambardella [12] used ant colony optimization to solve the problem, while
Vansteenwegen et al. [26] present an iterated local search metaheuristic. In this
method, an insert step is combined with a shake step to explore the search space
more efficiently. Tricoire et al. [23] defined the Multi-Period Orienteering Prob-
lem with Multiple Time Windows (MuPOPTW) as a new problem for scheduling
the customer visits of sales representatives. The MuPOPTW is a generalization
of OPTW and TOPTW, where customers may be visited on different days, and
may have several time windows for each given day. They propose an exact algo-
rithm embedded in a variable neighborhood search method and provide experi-
mental results for their method on standard benchmark of OPTW and TOPTW
instances. Lin and Yu [11] presented a simulated annealing based heuristic ap-
proach to solve TOPTW. The method proposed by Labadie et al. [10] combines
greedy randomized adaptive search procedure (GRASP) with evolutionary local
search (ELS). ELS generates multiple distinct child solutions that are further
improved by a local search procedure, while GRASP provides multiple start-
ing solutions to ELS. Labadie et al. [9] introduced granular variant to a VNS
algorithm in order to improve its efficiency. Firstly, each arc is evaluated with
new cost taken into account traveling times, waiting times and profits. Then,
an assignment problem is optimally solved and intervals of granularity are cre-
ated. These intervals determine subset of promising arcs which will be considered
during the node sequences construction in the local search procedure.

In this paper, a metaheuristic-based memetic algorithm (MA) is presented
for TOPTW. The proposed MA works with permutation encoding and uses an
adapted procedure to optimally split a sequence into a set of routes. The rest
of the article is organized as follows. The next section is devoted to the formu-
lation of TOPTW. Section 3 presents the detailed description of the proposed
method including the solution representation, the optimal split procedure, and
other components and parameters. In Section 4, the effectiveness of the pro-
posed algorithm is demonstrated by many computational results based on some
benchmark problems. The conclusions are discussed in the final Section 5.

2 Formulation of the problem

TOPTW is modeled with a graph G = (V,E), V = {0, 1, 2, ..., n} is the set of
vertices where i 6= 0 represents a customer and 0 represents the depot. E =
{(i, j) : i 6= j, i, j ∈ V } is the edge set. Each vertex i ∈ V, i 6= 0 is associated
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with a profit Pi and a service time Ti. The visit of a vertex i can start only
within a predefined time window [ei, li]. The vehicle v cannot arrive later than
the time li and if it arrives earlier than ei, it must wait W v

i before the service can
start. Each edge (i, j) ∈ E is associated with a travel cost ci,j which is assumed
to be symmetric and satisfying the triangle inequality. A tour R is represented
as an ordered list of q customers from V , so R = (R[1], . . . , R[q]). Each tour
begins and ends at the depot vertex. We denote the total profit collected from
a tour R as P (R) =

∑i=q
i=1 PR[i], and the total travel cost or duration C(R) =

c0,R[1]+
∑i=q−1
i=1 cR[i],R[i+1]+

∑i=q
i=1W

R
R[i]+

∑i=q
i=1 TR[i]+cR[q],0. A tour R is feasible

if C(R) ≤ l0, l0 being a latest possible arrival time to the depot, and if each
customer is serviced within its time window. The fleet is composed of m identical
vehicles. A solution S is consequently a set of m (or fewer) feasible tours R in
which each customer is visited at most once. The goal is to find a solution
S such that

∑
R∈S P (R) is maximized. For mixed integer linear programming

formulations of TOPTW see [12] and [26].

3 Memetic algorithm

Memetic algorithm is a combination of an evolutionary algorithm and local
search framework [13]. The basic idea behind memetic approaches is to combine
the advantages of the crossover that discovers unexplored promising regions of
the search space, and local optimization that finds good solutions by concentrat-
ing the search around these regions. The proposed memetic algorithm is based
on permutation encoding. The key feature of the proposed method is the split
procedure that allows a reduction of the solution space exploration within the
global optimization. We introduce an interesting way to represent solutions of
TOPTW, known as giant tours. Each giant tour is in fact a neighborhood of
solutions in the search space from which the optimal associated solution can
be easily extracted by an evaluation process. Therefore, a heuristic using this
representation explores a smaller solution space without any loss of information
and has a better chance to reach the global optimum. The good results obtained
on several extensions of the routing problems have raised a growing attention on
the split strategy [16]. Next, all the details of MA implementation are presented.

3.1 Chromosome and evaluation

The representation of our chromosome consists of an ordered list of all acces-
sible customers in V called a giant tour. The giant tour is a permutation of n
positive integers, such that each integer corresponds to a customer without trip
delimiters. We try to extract m tours from the giant tour while respecting the
order of the customers in the sequence. A tour from a permutation π is identified
by its starting point i in the sequence and the number of customers following
i. A chromosome is evaluated using a tour splitting procedure which optimally
partitions π into feasible routes. Using this strategy, the MA searches the set of
possible giant tours to find one that gives an optimal solution after splitting.
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Bouly et al. [2] proposed an optimal splitting procedure which is specific
to TOP. In their method, only tours of maximum length are considered. This
means that all customers following i in the sequence are included in the tour as
long as all constraints are satisfied, or until the end of the sequence is reached.
Such a tour is called saturated tour. They proved that solutions containing only
saturated tours are dominant. Therefore, only saturated tours were considered
in their procedure. Later, Dang et al. [6] introduced a new evaluation procedure
in which the limited number of saturated tours is exploited more efficiently to
reduce the complexity of the evaluation process. Before reviewing the main idea
of the split procedure, we recall the definition of an interval graph [22] as follows.
A graph G = (V,E) is an interval graph if there is a mapping I between the
vertex set of G and a collection of intervals in the real line such that two vertices
of G are adjacent if their respective intervals intersect. Then, for all i and j of
V , [i, j] ∈ E if and only if I(i) ∩ I(j) 6= ∅.

We have extended the split procedure for TOPTW to tackle time windows.
When defining a saturated tour R starting with x, we should make sure that
each customer is served within its time window and that C(R) ≤ l0, where l0 is
the latest possible arrival time to the depot and C(R) the total travel duration.
So, a waiting time is added each time the vehicle arrives at a customer before
the beginning of his time window. The set of extracted tours from a giant tour
can be mapped to the set of vertices of an interval graph X. An edge in X
indicates the presence of shared customers between the associated tours. A split
procedure looks for m tours without any shared customer such that the sum of
their profit is maximized. So this is equivalent to solve a knapsack problem with
the conflict graph X. In this particular knapsack problem, the number of items
is equal to the number of possible tours. This number is equal to n when only
saturated tours are considered. The weight of each item is one and the capacity
of the knapsack is m. Such a problem can be solved in O(m · n) time and space
[18].

Proposition 1 Given a TOPTW instance where m is the maximum number of
available vehicles and π a permutation of n customers, the split procedure of π
can be done optimally in O(m · n) time and space.
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The evaluation process is performed with dynamic programming technique: A
two-dimensional array of size m ·n is used to memorize the maximum reachable
profit during process. Then, a backtrack is performed in order to determine the
tours corresponding to the optimal solution. The first graph of Figure 1 shows a
sequence S = (1, 2, 3, 4, 5) where each customer has a profit and a time window
given in the square brackets. To simplify, we assume that the service times are
set to 0, the number of the vehicles m used is equal to 2, and the maximum
operation time l0 is 100. The interval model is given in the Figure 1.b. The first
interval [1, 2] for example with weight 40 corresponds to the collected profit of
the trip (d, 1, 2, a). Vehicle leaves the depot at time 0, waits 10 units of time at
node 1 before leaving it to serve node 2 at time 40. The customer 3 cannot be
included in the trip, since its time window is already closed when the vehicle
reaches it at time 70. The other intervals [i, j] of the graph are similarly defined.
The maximum score obtained in the solving steps is equal to 120. Finally, we
give the optimal solution obtained by the algorithm in Figure 1.c. It is composed
of two tours starting respectively with customers 1 and 4.

3.2 Population

A small part of the initial population is created with a fast heuristic procedure
and the remainder is generated randomly. In the proposed Iterative Destruc-
tion/Construction Heuristic (IDCH), we build a feasible solution by inserting
at every iteration an unrouted customer. This process is performed using Best
Insertion Algorithm (BIA). Initially, IDCH removes a limited random number
of customers D ∈ {1, 2, 3} from the current solution. Then, the travel cost of
tours is reduced using 2-opt* and Or-opt exchanges [14]. In the next step, we
rebuild the solution by re-inserting unrouted customers in all possible ways. To
ensure that the feasibility of an insertion is verified in O(1), we record for each
already included customer i in a route r, its waiting time W r

i and the maximum
delay allowed for the service Maxshiftri . All feasible insertions of each unserved
customer u between two couple of adjacent customers i and j are evaluated.
This is done according to a suitable cost function f(u) = Shiftu/(Pu)α where
Shiftu = (ci,u + W r

i + Tu + cu,j − ci,j). The feasible insertion that minimizes
the cost is then processed. In addition, priority coefficient priou is associated
to each customer u. Whenever the customer is not routed through a construc-
tion phase its priority is increased by the value of its profit. The customer u
that has a lager priou is more likely to be inserted. When a limited number of
iterations iterperturb = n is reached without a strict improvement, a method
of diversification is performed. Diversification stands for random moves that
can deteriorate the current solution by removing a large number of customers
Dperturb ∈ [1, n/m]. The destruction and construction phases are iterated until
itermax = n2 iterations without improvement.
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3.3 Selection and crossover

In this work, the binary tournament method [15] is adopted to select a couple
of parents among the population. Two chromosomes are randomly selected in
the population, and the chromosome with the best evaluation becomes the first
parent. The tournament is repeated for the second parent. These parents are
then combined using linear order crossover or LOX [15]. LOX first chooses two
cut points randomly and passes the section enclosed by the cut points from one
parent to child. Then, the unpassed customers are placed in the unfilled positions
using the order of their occurrence in the other parent.

3.4 Local search engine

When a new child is computed with the crossover operator, the local search
scheme is applied with a probability pm. Neighborhoods are selected in a random
order. The search in a given neighborhood is stopped as soon as a better solution
is found. Then, a new neighborhood is chosen randomly. This process is stopped
when all neighborhoods fail to bring out an improvement to the current solution.
The set of local search operators used in the Memetic Algorithm are:

– 2-opt* operator : two routes r1 and r2 are divided into two parts. Then the
first part of r1 is connected to the second part of r2, while the first part of
r2 is connected to the second part of r1.

– Or-opt operator : consider a sequence of one, two or three consecutive cus-
tomers in the the current solution, and move the sequence to another location
in the same route.

– destruction/repair operator : first, a random number of customers (between
1 and n

m ) is removed from an identified solution. Then, the lowest possible

insertion cost Shifti
(Pi)α

of each unrouted customer i is evaluated. The visit with

the lowest ratio will be selected for insertion.
– shift operator : a customer is removed from its current position and is relo-

cated at another one. Every possible insertion position for every customer is
considered.

– swap operator : positions of every two customers in the sequence are ex-
changed.

3.5 Population update

When an offspring solution snew is created by the crossover operator presented
in Section 3.3 and improved by the local search algorithm described in Section
3.4, we decide if the improved offspring should be inserted into the population
and which existing solution of the population should be replaced. Basically, our
decision is made based on both: the solution quality and the distance between
solutions in the population. The update procedure is applied if the performance
of new solution snew is better than the worst individual. Population is a list of
solutions sorted in descending order according to two criteria: the total collected
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profit and the travel cost/time. Two solutions are said to be similar or identical
if the evaluation procedure returns the same profit and a difference in travel
cost/time lower than a value δ. If there is a solution s similar to snew, then s
is replaced with snew. Otherwise the worst individual is deleted and the new
solution is inserted into the population.

3.6 Basic algorithm

The proposed Memetic Algorithm associates all the elements described above.
Algorithm 1 presents a synthetic view of the whole process. The algorithm starts

Algorithm 1: Basic algorithm

Data: POP a population of N solutions;
Result: SPOP [N − 1] best solution found;

1 begin
2 initialize and evaluate each solution in POP (see Section 3.2);
3 while NOT (stopping condition) do
4 select 2 parents POP [p1] and POP [p2] using binary tournament;
5 C ← LOX(POP [p1], POP [p2]) ;
6 if rand(0, 1) < pm then
7 apply local search on C (see Section 3.4);

8 if f(C) ≥ f(POP [0])(see Section 3.5) then
9 if @p‖(f(POP[p]) = f(C)) then

10 eject POP [0] from POP ;
11 reset stopping condition ;

12 else
13 update stopping condition;

14 insert or replace C in right place in POP ;

15 else
16 update stopping condition;

with an initial set of solutions, called population. During each iteration, two
parents are selected and crossover operator is applied to create a new solution.
The obtained child chromosome has a probability pm of being mutated using
a set of local search techniques repeatedly. Finally, it is inserted within the
population according to its fitness evaluation. The stopping criterion for MA is
after reaching a maximum number of iterations without improvement. That is to
say after reaching the number of iterations where the child chromosome has the
same fitness as an existing chromosome in the population, or when its evaluation
is worse than the worst chromosome in the current population.
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4 Numerical results

We used 56 instances designed by Solomon [19] and 20 instances designed by
Cordeau et al. [4] to test our new proposed algorithm. Solomon’s 100-customer
instances are divided into random, clustered and randomclustered categories. In
Cordeau’s instances, the number of customers varies between 48 and 288. A third
set of benchmark was introduced by Vansteenwegen et al. [26] using the original
instances of Solomon and Cordeau. In these instances, the number of vehicles
considered allows to visit all customers that is why the optimal solutions of these
instances are known since they are equal to the sum of customers’ profits. Travel
time between two customers is assumed to be equal to the travel distance. It
is rounded down to the first decimal for the Solomon’s instances and to the
second decimal for the Cordeau’s instances. The whole algorithmic approach
was implemented in C++ using the Standard Template Library (STL) for data
structures and was compiled using the GNU GCC compiler on an AMD Opteron
2.60 GHz in a Linux environment.

4.1 Parameter setting

A number of different alternative values were tested and the ones selected are
those that gave the best computational results concerning both the quality
of the solution and the computational time needed to achieve this solution.
When the population is initialized, 5 chromosomes are generated by the IDCH
heuristic and the rest (35) are generated randomly. The similarity measurement
of individuals δ is set to 0.01 and the local search rate pm is calculated as:
1− iter

itermax where iter is the number of consecutive iterations without improve-
ment. The algorithm stops when iter reaches itermax = k ∗ n/m. The cost
function C(u) = Shiftu/(Pu)α of the BIA heuristic uses a random value of
α generated in [1, 3]. This control parameter makes our IDCH less predictable
and actually a randomized heuristic. Moreover, the score becomes more rele-
vant than the time consumption when deciding which unrouted client is the
most promising to insert. If α is set to 1, the obtained results are worse. Finally
only two parameters are required to be tuned, they are the stopping condition
k and the population size N . Computational experiments were conducted on a
representative subset of the problem characteristics (problem size, distribution
of customer location, and time windows characteristic). This small subset in-
cludes 40 instances: 6 problems from Solomon’s instances and 4 problems from
Cordeau’s instances with m = 1, 2, 3, 4. The value of k and N were varied from
10 up to 50 with steps of 10. This results 25 different (k,N) settings to be tested.
The algorithm was run 5 times on different randomly generated seeds for each in-
stance. For an overall performance comparison between different configurations,
we use two following measures. The first one is the relative gap to the best known
solutions, denoted rpe(%) and the second is the average computational time in
seconds CPUavg. The results for each of the 25 parameter combinations tested
are illustrated in Figure 2. We adopt the parameter settings (10, 40) which gives
a good trade off between algorithm performance and computational time.
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Instance Set
ACS ILS VNS GRASP-ELS SA GVNS MA

rpe cpuavg rpe cpuavg rpe cpuavg rpe cpuavg rpe cpuavg rpe cpuavg rpe cpuavg
m=1
c100 0 6.34 1.11 0.33 0 98.39 0 22.59 0 21.07 0.56 166.46 0 0.98
r100 0 383.40 1.90 0.19 0 89.10 0.11 3.51 0.11 23.34 1.72 29.43 0 5.38
rc100 0 143.21 2.92 0.23 0 65.21 0.33 1.99 0 22.19 1.88 9.80 0 1.59
c200 0.40 342.61 2.28 1.71 0 560.17 0.40 32.18 0.13 37.49 0.55 192.40 0 122.40
r200 2.18 1556.70 2.89 1.66 0.40 1065.82 0.59 11.18 1.29 45.83 2.44 33.82 -0.52 236.10
rc200 1.23 1544.55 3.43 1.63 0.07 869.41 1.37 8.21 0.96 50.25 2.53 16.01 -0.02 201.52
pr01-pr10 1.05 1626.61 4.72 1.75 0 822.07 0.73 5.03 0.97 112.21 0.54 12.37 -0.02 485.98
pr11-pr20 10.73 887.66 9.11 1.98 0.93 1045.93 1.70 7.90 3.25 162.40 2.71 24.22 0.39 903.08
m=2
c100 0.15 818.00 0.94 1.08 0 87.98 0 70.94 0 26.42 0.47 139.53 0 70.09
r100 0.34 1559.36 2.27 0.87 0.06 63.46 0.92 7.97 0.14 36.63 1.10 60.34 -0.12 45.98
rc100 0.38 1375.78 2.47 0.71 0.23 55.16 1.46 4.66 0.19 40.48 0.78 20.31 0 46.33
c200 1.27 1398.10 2.54 3.46 0.51 545.65 0.09 29.26 1.18 53.66 0.25 33.79 0 164.93
r200 3.11 2735.15 2.69 2.27 0.20 1015.08 0.28 17.58 0.53 91.40 0.62 14.73 -0.57 634.67
rc200 2.64 2342.72 4.08 2.20 0.43 804.83 0.59 17.14 1.18 80.10 1.62 12.76 -0.60 355.97
pr01-pr10 2.35 1889.66 5.99 4.76 0.63 524.83 0.87 19.46 2.21 173.93 0.57 39.09 -0.44 1291.54
pr11-pr20 4.79 2384.81 7.65 5.21 1.04 618.78 2.21 28.77 3.66 201.63 0.98 82.44 -0.24 2144.27
m=3
c100 0.11 1043.24 2.44 1.50 0 85.49 0.13 86.74 0.22 35.26 0.34 165.01 0 70.77
r100 0.55 1668.86 1.78 1.67 0.21 61.91 0.89 13.86 0.38 56.07 1.21 73.93 -0.01 58.56
rc100 1.19 1476.81 3.14 1.11 0.36 60.62 1.83 8.65 0.64 42.80 0.91 33.68 -0.01 54.72
c200 0.55 1413.11 1.98 2.08 0.16 196.80 0.45 26.75 0.35 53.93 0.64 55.42 -0.10 104.73
r200 0.13 1171.65 0.30 1.36 0.03 321.65 0 2.49 0.08 41.95 0.11 6.97 0 74.22
rc200 0.37 1607.85 1.37 1.73 0.04 404.01 0.06 8.34 0.20 58.98 0.25 7.41 -0.07 212.43
pr01-pr10 3.01 2163.80 6.57 9.24 1.50 473.20 1.31 40.55 2.33 197.01 0.35 85.90 -0.33 1416.21
pr11-pr20 5.19 2383.29 8.91 9.69 1.48 517.48 2.00 42.95 3.51 251.83 0.72 150.73 -0.71 2388.19
m=4
c100 0.47 1056.05 2.93 2.57 0.09 81.87 0.50 84.58 0.36 49.51 0.85 133.22 -0.19 106.15
r100 0.99 1652.54 3.25 2.60 0.24 61.17 0.88 24.18 0.67 58.38 1.15 84.74 -0.11 79.46
rc100 0.92 1854.00 3.07 1.98 0.34 58.47 1.43 13.35 0.26 68.13 0.85 36.91 -0.24 57.66
c200 0 7.70 0 1.00 0 104.78 0 0.01 0 41.76 0 0.55 0 0.04
r200 0 126.46 0 0.87 0 150.74 0 0.03 0 39.71 0 0.27 0 0.10
rc200 0 646.72 0 1.24 0 164.56 0 0.03 0 40.15 0 0.88 0 0.15
pr01-pr10 2.34 2447.70 6.63 14.07 1.40 403.17 1.42 45.75 1.76 255.57 0.60 127.33 -1.12 1807.40
pr11-pr20 4.18 2583.50 7.16 13.74 0.90 408.01 1.20 65.33 2.57 283.98 0.64 232.64 -2.23 2784.70
Average 1.65 1401.79 3.38 3.09 0.36 375.62 0.74 22.60 0.96 88.30 0.87 64.34 -0.23 524.00

Table 1. Performance comparison based on RPE average for each data set of the
standard benchmark.

Instance Set
ILS GRASP-ELS SA GVNS MA

arpe cpuavg arpe cpuavg arpe cpuavg arpe cpuavg arpe cpuavg
new Solomon’s instances 1.12 2.38 0.35 70.34 0.30 35.70 0.65 16.92 0.04 43.02
new Cordeau’s instances 2.32 30.41 1.04 565.98 0.92 71.48 1.25 51.34 0.76 112.63
Average 1.72 16.40 0.70 318.16 0.61 53.59 0.95 34.13 0.40 77.82

Table 2. Performance comparison based on ARPE average for each data set of the
new benchmark.
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Fig. 2. Pareto front solutions obtained with different settings of the stopping condition
k and the population size N

4.2 Performance comparison

In order to investigate the performance of the proposed MA for TOPTW, we
compare it with: the Ant Colony System (ACS) of [12], the Iterated Local Search
(ILS) of [26], the Variable Neighborhood Search (VNS) of [23], the Simulated
Annealing approach (SA) of [11], the Greedy Randomized Adaptive Search pro-
cedure of (GRASP-ELS) [10] and the Granular Variable Neighborhood Search
(GVNS) of [9]. The results of GVNS, GRASP-ELS and ACS were obtained with
5 runs of the algorithm on each instance. VNS was run 10 times per instance
while ILS and SA were executed only once. We used the same protocol as in the
state-of-the-art methods and run MA 5 times for each instance. The quality of
the produced solutions is given in terms of the relative percentage error (RPE)
for the standard benchmark and in terms of the average relative percentage error
(ARPE) for the new data set where there exists a solution visiting all customers.
Tables 1 and 2 summarize the comparison and report the percentage error (RPE
or ARPE) and the average computational time in seconds CPUavg for each in-
stance set. MA produces the best relative gap which is equal to −0, 23% for the
standard benchmark and 0, 40% for the new data set. The first conclusion that
can be drawn from these tables is that MA is very competitive compared to the
others methods. It outperforms the other methods and improves 101 instances
for which the optimal solution remains unknown. However, one should note that
MA is far more time consuming. Actually, on the largest instances. MA needs
more time to get good quality solutions. The reason appears to be that a lot
of time is consumed by local-search operators. This is necessary to take entirely
advantage of the MA component.

15



5 Conclusion

In this paper, a Memetic Algorithm was proposed for the Team Orienteering
Problem with Time Windows. The key feature of our algorithm is the use
of an Optimal Split procedure especially intended for TOPTW that runs in
O(m · n). The proposed algorithm integrates several optimization methods, in-
cluding heuristic approaches, a crossover operator, a local search optimization
procedure and a quality-and-diversity based population updating strategy. The
computational results obtained prove the efficiency of our memetic algorithm for
TOPTW in comparison with the existing ones. The algorithm brings further im-
provements and has allowed the identification of new best known solutions. The
method is also very flexible in the sense that it can address many problem vari-
ants with a unified methodology and common parameter settings. Future work
will focus on extending the methodology to a wider array of vehicle routing
problems with time windows.
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Abstra
t. This paper presents an enhan
ement of the well-known Lou-

vain algorithm for 
ommunity dete
tion with modularity maximization

whi
h was introdu
ed in [16℄. The Louvain algorithm is a partial multi-

level method whi
h applies the vertex mover heuristi
 to a series of 
oars-

ened graphs. The Louvain+ algorithm proposed in this paper generalizes

the Louvain algorithm by in
luding a un
oarsening phase, leading to a

full multi-level method. Experiments on a set of popular 
omplex net-

works show the bene�ts indu
ed by the proposed Louvain+ algorithm.

Keywords: Clustering; Optimization over networks; Heuristi
s.

1 Introdu
tion

Complex networks are a graph-based model whi
h is very useful to represent


onne
tions and intera
tions of the underlying entities in a real networked sys-

tem su
h as so
ial [1℄, biologi
al [2℄, and te
hnologi
al networks [3℄. A vertex

of the 
omplex network represents an obje
t of the real system while an edge

symbolizes an intera
tion between two obje
ts. For example in a so
ial network,

a vertex 
orresponds to a parti
ular member of the network and an edge repre-

sents a relationship between two members. Complex networks typi
ally display

non-trivial stru
tural and fun
tional properties whi
h impa
t the dynami
s of

pro
esses applied to the network [4℄. Analysis and synthesis of 
omplex networks

help dis
over these spe
i�
 features, understand the dynami
s of the networks

and represent a real 
hallenge for resear
h [5,6℄.

A 
omplex network may be 
hara
terized by a 
ommunity stru
ture. Verti
es

of a 
ommunity are grouped to be highly inter
onne
ted while di�erent 
ommu-

nities are loosely asso
iated with ea
h other. Community is also 
alled 
luster

or still module [7℄. All the 
ommunities of a network form a 
lustering. In terms

of graph theory, a 
lustering 
an be de�ned as a partition of the verti
es of the

underlying graph into disjoint subsets, ea
h subset representing a 
ommunity.

Intuitively, a 
ommunity is a 
ohesive group of verti
es that are more 
on-

ne
ted to ea
h other than to the verti
es in other 
ommunities. To quantify the

quality of a given 
ommunity and more generally a 
lustering, modularity is 
er-

tainly the most popular measure [8℄. Under this quality measure, the problem
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of 
ommunity dete
tion be
omes a pure 
ombinatorial optimization problem.

Formally, the modularity measure 
an be stated as follows.

Given a weighted graph G = (V,E,w) where w is a weighting fun
tion, i.e.,

w : V × V 7−→ R su
h that for all {u, v} ∈ E,w({u, v}) 6= 0, and for all {u, v} /∈
E,w({u, v}) = 0. Let X ⊆ V and Y ⊆ V be two vertex subsets, W (X,Y ) the
weight sum of the edges linking X and Y , i.e., W (X,Y ) =

∑
u∈X,v∈Y w({u, v})

(in this formula, ea
h edge is 
ounted twi
e). The modularity of a 
lustering

with k 
ommunities C = {c1, c2, ..., ck} (∀i ∈ {1, 2, ..., k}, ci ⊂ V and ci 6= ∅;
∪k
i=1ci = V ; ∀i, j ∈ {1, 2, ..., k}, ci ∩ cj = ∅) is given by:

Q(C) =

k∑

i=1

[
W (ci, ci)

W (V, V )
−
(

di
W (V, V )

)2
]

(1)

where di is the sum of the degrees of the verti
es of 
ommunity ci, i.e.,
di =

∑
v∈ci

deg(v) with deg(v) being the degree of vertex v.
It is easy to show that Q belongs to the interval [-0.5,1℄. A 
lustering with a

small Q value 
lose to -0.5 implies the absen
e of real 
ommunities. A large Q
value 
lose to 1 indi
ates a good 
lustering 
ontaining highly 
ohesive 
ommu-

nities. The trivial 
lustering with a single 
luster has a Q value of 0.

Community dete
tion with modularity is an important resear
h topi
 and

has a number of 
on
rete appli
ations [9℄. In addition to its pra
ti
al interest,


ommunity dete
tion is also notable for its di�
ulty from a 
omputational point

of view. Indeed, the problem is known to be NP-hard [10℄ and 
onstitutes thus

a real 
hallenge for optimization methods.

A number of heuristi
 algorithms have been proposed re
ently in the liter-

ature for 
ommunity dete
tion with the modularity measure. These algorithms

follow three general solution approa
hes. First, greedy agglomeration algorithms

like [11,12℄ iteratively merge two 
lusters that yield a 
lustering by following a

greedy 
riterion. Se
ond, lo
al optimization algorithms like [13,14,15℄ improve

progressively the solution quality by transitioning from a 
lustering to another


lustering (often of better quality) by applying a move operator. The quality

of su
h an algorithm depends strongly (among other things) on the move op-

erator(s) employed. Third, hybrid algorithms like [16,17,18,19℄ 
ombine several

sear
h strategies (e.g., greedy and multi-level methods) in order to take ad-

vantage of the underlying methods. Among the existing 
ommunity dete
tion

algorithms, the Louvain algorithm presented in [16℄ (see next se
tion) is among

the most popular methods.

The Louvain algorithm belongs to the hybrid approa
h and 
an be 
ompared

to the general multi-level framework whi
h requires both a 
oarsening and un-


oarsening phases [20℄. The 
oarsening phase redu
es the size of a graph at ea
h

level by grouping several verti
es of the original graph into a single vertex. The

un
oarsening phase does the inverse by unfolding the verti
es of the 
oarsen

graph and then applying a re�nement (optimization) pro
edure. While Louvain

algorithm does use a 
oarsening phase, it omits the un
oarsening phase. How-

ever, from an optimization point of view, it is known that the un
oarsening

phase within the multi-level framework is useful to further improve the quality
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of the solution (see the example given in Se
t. 2). This paper aims to extend the

Louvain algorithm by in
luding a un
oarsening phase, making the algorithm a

full multi-level method. Experiments on a set of popular 
omplex networks show

the bene�ts indu
ed by the proposed Louvain+ algorithm.

2 The Louvain Algorithm

The Louvain algorithm presented by Blondel et al. [16℄ operates on multiple

levels of graphs, applying the vertex mover (VM) pro
edure on ea
h level to

improve the modularity. In this Se
tion, we re
all the two key elements of the

methods: the VM pro
edure and the 
oarsening phase.

2.1 Vertex mover pro
edure

For a given graph where ea
h vertex represents a 
ommunity, one iteration of

VM explores all the verti
es of the graph in a random order. For ea
h vertex,

one examines all the possible moves to a neighbor 
ommunity with an in
reased

modularity. The move giving the largest in
rease is 
hosen and realized. At the

end of an iteration, all the verti
es of the 
urrent graph are pro
essed. One

pro
eeds with a new iteration if at least one vertex has migrated. To ensure that

the verti
es are examined in a purely random order during ea
h iteration, the

exploration of the verti
es follows a random permutation of {1, 2, ..., n} whi
h

is generated at the beginning on
e and for all. The pro
edure stops if no vertex

has migrated when all the verti
es have been examined. Another possible stop


riterion is a minimum modularity gain: if the total gain obtained in one iteration

is lower than the minimum gain required, the algorithm stops.

2.2 Coarsening phase

The 
oarsening phase of the Louvain algorithm starts with the initial graph G
(
all it level 0 graph G0

) and produ
es a hierar
hy of 
oarser graphs G1, G2, ... of
de
reasing orders. We use Gl = (V l, El, wl) to denote the graph of level l. From
the graph G0

and the initial trivial 
lustering where ea
h vertex of G0
forms

a singleton 
ommunity, the VM heuristi
 is applied to generate an improved


lustering C0
. Then the graph G1

of level 1 is 
reated su
h that a vertex is

introdu
ed for ea
h 
ommunity of C0
and an edge between two verti
es is de�ned

if they represent two neighboring 
ommunities in C0
. Now the VM heuristi
 is

applied to the new graph G1
with the 
lustering of singleton 
ommunities. This

pro
ess 
ontinues and stops at some level L if the VM heuristi
 
an not improve

the initial 
lustering with singleton 
ommunities of GL
.

Formally, the generation of the 
oarsened graphGl+1
from (Gl

,Cl
) are a
hieved

a

ording to the following steps [21℄.

1. A vertex in Gl+1

orresponds to a 
ommunity of 
lustering Cl

and vi
e versa.

Given a 
ommunity c of 
lustering Cl
, let T l+1(c) denote the 
orresponding

vertex in Gl+1
.
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Fig. 1. Illustration of the Louvain algorithm. The initial graph G0

ontains 17 verti
es

and 29 edges. A �rst appli
ation of VM pro
edure to the trivial 
lustering of singleton


ommunities gives the 
lustering C0

omposed of 5 
ommunities. Then the 
oarsen

graph G1
is built with weighted edges and loops (squares in this graph represents


ommunities from a lower level). The VM pro
edure is applied to the new graph G1

to obtain the 
lustering C1
with 3 
ommunities. At level 2, the appli
ation of the

VM pro
edure to the initial 
lustering of singleton 
ommunities does not 
hange the


lustering. The algorithm stops.
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2. Given two 
ommunities c and c′ of 
lustering Cl
, if they are 
onne
ted by at

least one edge in Gl
, then their 
orresponding verti
es T l+1(c) and T l+1(c′)

are linked by an edge in Gl+1
. Additionally, the edge is weighted by

W l(c,c′)
2 .

3. A loop is added to ea
h vertex T l+1(c) 
orresponding to 
ommunity c weighted
by wl+1(T l+1(c), T l+1(c)) = W l(c, c).

This Louvain algorithm is illustrated on Figure 1 with a simple graph 
on-

taining 17 verti
es and 29 edges.

3 Algorithm Louvain+

We extend the Louvain algorithm by introdu
ing an un
oarsening-re�nement

phase at the end of the standard Louvain algorithm. Our Louvain+ algorithm

exe
utes the following steps:

1. Run the Louvain algorithm to obtain a series of 
oarsened graphsG1, G2, ...GL

and 
lusterings C1, C2, ...CL
, assuming the highest level is L.

2. Run the un
oarsening phase from CL−1
and proje
t the 
urrent 
lustering

to a new 
lustering C̄L−2
where ea
h 
oarsened 
ommunity of the 
urrent


lustering is unfolded (un
oarsened) into its 
omposing 
ommunities. The

new 
lustering C̄L−2
is immediately re�ned by the VM heuristi
 to improve

its quality. The improved C̄L−2
serves then as the initial 
lustering for the

next proje
tion appli
ation. This pro
ess 
ontinues until level 0 is rea
hed.

(Noti
e that it is useless to start the un
oarsening phase from CL
sin
e

no moves are made by the VM heuristi
 during the last iteration of the


oarsening phase.)

We des
ribe now the pro
ess of proje
tion. Given two verti
es vl1 and vl2
of graph Gl

, we use vl1 Γ
l vl2 to denote the relation �vl1 and vl2 belong to the

same 
ommunity in Cl
.� Furthermore, we use γl(vl) to denote the 
ommunity

to whi
h vertex vl belongs in Cl
. By 
onvention, let C̄L−1 = CL−1

denote the

�rst proje
ted 
lustering. At ea
h level l = L − 2, L − 3..., the 
lustering C̄l

is the result of the proje
tion of C̄l+1
onto Cl

whi
h is optimized by the VM

heuristi
. In C̄l
, two verti
es vl1 and vl2 belong to the same 
ommunity if the

verti
es in Gl+1

orresponding to the 
ommunities γl(vl1) and γl(vl2) from Cl

belong to the same 
ommunity in Cl+1
. Formally, this is denoted by vl1 Γ

l vl2 ≡
T l(γl(vl1))Γ

l+1 T l(γl(vl2)). This relation de�nes entirely the new 
lustering C̄l
.

The number of 
ommunities in C̄l+1
is the same as in C̄l

. The un
oarsening phase

with re�nement by the VM heuristi
 is illustrated on Figure 2 whi
h starts with

the result of Louvain algorithm (i.e., C1
) obtained in Figure 1.

4 Experimental results

4.1 Ben
hmark and proto
ol of test

To evaluate the e�
ien
y of our Louvain+ algorithm, we 
ompare it with the

Louvain algorithm on a set of 13 networks from di�erent appli
ation domains
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Fig. 2. Illustration of the un
oarsening-re�nement phase of the Louvain+ algorithm.

We start with level 1 from the example of Figure 1. The 
lustering C1
of level 1

has three 
ommunities 
ontaining 
ommunities from level 0. With the un
oarsening

operation, the 
lustering C1
is proje
ted to a new 
lustering where new 
ommunities

are formed. For instan
e all the verti
es from 
ommunities 1 and 5 of C0
now form a

new 
ommunity of the proje
ted 
lustering while 
ommunities 2 and 4 of C0
lead to

another new 
ommunity. Sin
e the stru
ture of 
ommunities in the proje
ted 
lustering

has 
hanged, the VM pro
edure 
an be applied to the proje
ted 
lustering to obtain

an improved 
lustering with an in
reased modularity. We see that displa
ing vertex

6 of the proje
ted 
lustering from 
ommunity 1 to 
ommunity 2 leads to a higher

modularity (0.38228 vs 0.37872).

shown in Table 1. Both algorithms are 
oded in Free Pas
al and exe
uted on a PC

equipped with a Pentium Core i7 870 of 2.93 GHz and 8 GB of RAM

3

. Sin
e

the algorithm is sensitive to the order of verti
es, we generate 100 instan
es

of ea
h graph with random verti
es order. We use a deterministi
 version of

the Louvain and Louvain+ algorithms (i.e. without preliminary random vertex

reordering) and exe
ute them on these 100 instan
es. For ea
h graph, we present

the distribution or average of di�erent measures (modularity, number of verti
es

mispla
ed et
.) obtained over the 100 instan
es.

We use the minimal modularity gain ǫ between two 
onse
utive iterations

(see Se
t. 2.1) as the stop 
ondition of the VM pro
edure. We use ǫc and ǫr
to distinguish the minimal modularity gain for the 
oarsening phase (for both

3

The sour
e 
ode of our Louvain+ algorithm will be made available at www.info.univ-

angers.fr/pub/hao/Louvainplus.html
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Table 1. Ben
hmark graphs in the literature for 
ommunity dete
tion with the number

of verti
es (n) and the number of edges (m). These are undire
ted graphs with medium

size (from about 2000 to almost 1 million of edges).

Graph Des
ription n m Sour
e

Jazz jazz musi
ian 
ollaborations network 198 2742 [23℄

Email university e-mail network 1133 5451 [24℄

Power topology of the Western States Power Grid of the

United States

4941 6594 [25℄

Yeast Protein-Protein intera
tion network in yeast 2284 6646 [26℄

Erdos Erdös 
ollaboration network 6927 11850 [27℄

Arxiv network of s
ienti�
 papers and their 
itations 9377 24107 [28℄

PGP trust network of mutual signing of 
ryptography

keys

10680 24316 [29℄

Condmat2003 s
ienti�
 
oauthorship network in 
ondensed-

matter physi
s

27519 116181 [30℄

Astro-ph 
ollaboration network of arXiv Astro Physi
s 16046 121251 [31℄

Enron email network from Enron 36692 183831 [32℄

Brightkite friendship network from a lo
ation-based so
ial

networking servi
e

58228 214078 [33℄

Slashdot so
ial network from Slashdot news web site 77359 469180 [32℄

Gowalla lo
ation-based so
ial network from a website 196591 950327 [33℄

Louvain and Louvain+) and for the un
oarsening phase (only Louvain+). It is


lear that a smaller ǫ indu
es more appli
ations of the VM heuristi
 and thus

more 
omputing time. In all of our experiments, we set ǫr = 10−5
.

It is obvious that with the un
oarsening-re�nement phase, the proposed

Louvain+ algorithm will in
rease or leave un
hanged the modularity whi
h is

a
hieved by Louvain. In the rest of this se
tion, we assess experimentally the im-

pa
t of the un
oarsening phase of Louvain+ on the run time 
ost, the modularity

improvement and the stru
tural 
hanges of the 
lustering.

4.2 Exe
ution time and modularity

Figure 3 shows a 
omparison of a

umulated average runtime between Louvain

and Louvain+ when they are applied to the set of 13 graphs with the same

parameter value ǫc = ǫr = 10−5
. With the same 
oarsening phase in both algo-

rithms, we 
an measure the extra time required by the un
oarsening-re�nement

phase of Louvain+. We observe that the 
urve of Louvain+ is slightly above that

of Louvain but with a similar linear growth on m (number of edges in graph).

The time 
omplexity seems to be in O(m). Curve delta shows a linear in
rease

of runtime required by the un
oarsening-re�nement phase. Louvain+ does not


hange the 
omplexity of the Louvain algorithm. Over the 13 tested graphs, the

average in
rease of runtime 
aused by the re�nement is about 20%.

Figure 4 presents for ea
h graph the gain of modularity given by the re�ne-

ment of Louvain+. We observe that Louvain+ leads to an in
rease of modularity

between 0.002 and 0.01 with respe
t to the results obtained by Louvain. This is

a
hieved thanks to the un
oarsening phase introdu
ed in Louvain+.

On the other hand, as shown in Figure 3, Louvain+ 
onsumes more CPU time

than Louvain to a
hieve the reported (better) results. One interesting question is
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to know whether Louvain+ is able to attain the same results with less 
omputing

time. To verify this, we 
arry out another experiment where we run Louvain+

with a relaxed 
oarsening phase by using a mu
h larger ǫc value (ǫc = 10−2

instead of ǫc = 10−5
).

Now observe again Figure 4 for the modularity gain of Louvain+. It 
an be

seen that Louvain+ with ǫc = 10−2
leads to a modularity performan
e 
ompara-

ble to that with ǫc = 10−5
while the 
omputing time is de
reased, and be
omes

lower than the 
omputing time of Louvain. This 
an be explained as follows.

With the relaxed ǫc value, the 
oarsening phase is redu
ed. Even if this gener-

ally leads to a 
lustering with a de
reased modularity at the end of the 
oarsening

phase, the modularity is improved during the un
oarsening-re�nement phase.

Table 2. Stru
tural 
omparison between Louvain and the two versions of Louvain+

(with ǫc = 10−5
and ǫc = 10−2

respe
tively). The average per
entage of verti
es, mis-

pla
ed before the un
oarsening-re�nement phase and 
orre
tly pla
ed after, are 
om-

puted over the 100 instan
es of graphs. We also show the similarity, 
omputed by the

NMI, between 
lusterings before and after the re�nement phase (
olumn 'similarity').

graph % 
orre
tions similarity

ǫc = 10−5 ǫc = 10−2

Jazz 0.5% 1.3% 0.953

Email 1.2% 1.2% 0.879

Power 0.1% 0.1% 0.947

Yeast 0.6% 0.4% 0.869

Erdos 1.4% 1.4% 0.856

Arxiv 0.5% 0.4% 0.907

PGP 0.1% 0.1% 0.981

Condmat2003 0.4% 0.4% 0.884

Astro-ph 0.7% 0.5% 0.906

Enron 0.2% 0.1% 0.955

Brightkite 0.3% 0.1% 0.931

Slashdot 0.3% 0.0% 0.845

Gowalla 0.3% 0.2% 0.930

average 0.5% 0.5% 0.911

4.3 Bad verti
es and stru
tural 
hanges in 
lustering

We now turn our attention to evaluate the stru
tural 
hanges in 
lustering made

by the un
oarsening-re�nement phase of Louvain+. For this purpose, we 
om-

pare the 
lusterings obtained before and after the un
oarsening-re�nement phase,


orresponding to the results of Louvain and Louvain+ respe
tively. An interest-

ing measure for this evaluation is the per
entage of mispla
ed verti
es a

ording
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to the strong sense of 
ommunity 
riterion [34℄ 
orre
tly pla
ed by the re�ne-

ment. A 
ommunity is de�ned in the strong sense if the internal degree of all the

verti
es of the 
ommunity is greater than the external degree (there are more

adja
ent verti
es in a 
ommunity than outside). This is a very strong 
ondition

of existen
e of a 
ommunity whi
h is rarely satis�ed in real networks, but it is

interesting to 
ount the number of verti
es that do not satisfy this 
ondition

for a given 
lustering. To simplify our dis
ussion, we use the term '
orre
tion'

to designate these verti
es mispla
ed by Louvain (i.e., those verti
es with an

internal degree smaller than some external degree), but 
orre
tly pla
ed by Lou-

vain+, i.e. by the re�nement phase. Generally, a

ording to our observations,

the maximum of modularity goes with the minimum of mispla
ed verti
es.

We show in Table 2 the per
entage of verti
es 
orre
ted by the re�nement

phase of Louvain+ and the similarity between 
lusterings before and after this

phase. We �nd that the per
entage of 
orre
tions is positive for all the tested

graphs. This per
entage represents 0.1% to 1.4% of the total verti
es, with an

average of 0.5% over all the tested graphs. This information allows us to 
on�rm

on
e again the usefulness of the un
oarsening-re�nement phase introdu
ed in the

Louvain+ algorithm.

We also 
al
ulate the global stru
tural di�eren
e between 
lusterings before

and after the re�nement phase, measured by the similarity 
alled NMI [35℄. This

measure is based on information theory and mostly used in 
ommunity dete
tion.

The range of NMI goes from 0 (
ompletely di�erent 
lusterings) to 1 (identi
al


lusterings). Table 2 dis
loses that stru
tural 
hanges made by the Louvain+

re�nement is quite important with a NMI between 0.84 and 0.98. As the NMI

s
ale is logarithmi
, a value of 0.9 implies a signi�
ant stru
tural di�eren
e.

5 Con
lusion and perspe
tives

In this work, we have presented an improved algorithm for 
ommunity dete
tion

with modularity. The proposed Louvain+ algorithm extends the well-known Lou-

vain algorithm by adding an un
oarsening-re�nement phase, leading to a fully

multi-level method. From the result of the Louvain algorithm, this extension

goes ba
kward and un
oarsens su

essively ea
h intermediate graph generated

during the Louvain algorithm and applies the vertex mover heuristi
 to ea
h un-


oarsened graph to improve the modularity. We have assessed the performan
e

of the proposed algorithm on a set of 13 popular real networks. The 
omparisons

with Louvain show that with 
omparable 
omputing times, Louvain+ a
hieves

systemati
ally better modularity than Louvain does, thanks to the optimization

during the un
oarsening-re�nement phase. Experiments also dis
losed that the

extension of the un
oarsening phase does not 
hange the linear 
omplexity of

the initial Louvain algorithm.

Like Louvain, the proposed Louvain+ algorithm is 
on
eptually simple and


omputationally fast. As a 
onsequen
e, it 
an be applied to very large networks

that 
an be en
ountered in numerous real situations. Additionally, it 
an be used
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within more sophisti
ated methods, e.g. to generate initial 
lusterings that are

further improved by sear
h-based heuristi
s.

A
knowledgment

We are grateful to the referees for their 
omments and questions whi
h helped

us to improve the paper. The work is partially supported by the Pays de la

Loire Region (Fran
e) within the RaDaPop (2009-2013) and LigeRO (2010-2013)

proje
ts.

Referen
es

1. M. Girvan and M. E. J. Newman, Community stru
ture in so
ial and biologi
al

networks, 2002 Pro
eedings of the National A
ademy of S
ien
es of the United

States of Ameri
a 99(12):7821�7826

2. R. Guimerà and L. A. N. Amaral, Fun
tional 
artography of 
omplex metaboli


networks, 2005 Nature 433(7028):895�900

3. G. W. Flake, S. Lawren
e, C. L. Giles, and F. M. Coetzee, Self-organization and

identi�
ation of web 
ommunities, 2002 Computer 35(3):66�70

4. S. Bo

aletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Complex networks:

Stru
ture and dynami
s, 2006 Physi
s Reports 424(4-5):175�308

5. S. H. Strogatz. Exploring 
omplex networks, 2001 Nature 410(6825):268�276

6. R. Albert and A.-L. Barabási, Statisti
al me
hani
s of 
omplex networks, 2002

Rev. Mod. Phys. 74:47

7. M. Newman, Networks: An Introdu
tion, 2010 Oxford University Press

8. M. E. J. Newman and M. Girvan, Finding and evaluating 
ommunity stru
ture in

networks, 2004 Physi
al Review E 69(2):026113

9. S. Fortunato, Community dete
tion in graphs, 2010 Physi
s Reports 486(3-5):75�

174

10. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and

D. Wagner, On modularity 
lustering, 2008 IEEE Transa
tions on Knowledge

and Data Engineering 20(2):172�188

11. A. Clauset, M. E. J. Newman, and C. Moore, Finding 
ommunity stru
ture in very

large networks, 2004 Physi
al Review E 70(6):066111

12. M. E. J. Newman, Fast algorithm for dete
ting 
ommunity stru
ture in networks,

2004 Physi
al Review E 69(6):066133

13. P. S
huetz and A. Ca�is
h, E�
ient modularity optimization by multistep greedy

algorithm and vertex mover re�nement, 2008 Physi
al Review E 77(4):046112

14. Z. Lü and W. Huang, Iterated tabu sear
h for identifying 
ommunity stru
ture in


omplex networks, 2009 Physi
al Review E 80(2):026130

15. J. Du
h and A. Arenas, Community dete
tion in 
omplex networks using extremal

optimization, 2005 Physi
al Review E 72(2):027104

16. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of


ommunities in large networks, 2008 Journal of Statisti
al Me
hani
s: Theory and

Experiment 10:8�+.

17. X. Liu and T. Murata, Advan
ed modularity-spe
ialized label propagation algorithm

for dete
ting 
ommunities in networks, 2009 Physi
a A: Statisti
al Me
hani
s and

its Appli
ations 389(7): 1493�1500

29



18. A. Noa
k and R. Rotta, Multi-level algorithms for modularity 
lustering, 2009

Le
ture Notes in Computer S
ien
e 5526: 257�268

19. O. Ga
h and J.K. Hao, A memeti
 algorithm for 
ommunity dete
tion in 
omplex

networks, 2012 Le
ture Notes in Computer S
ien
e 7492: 327�336

20. C. Walshaw, Multilevel Re�nement for Combinatorial Optimisation Problems, 2004

Annals of Operations Resear
h 131: 325�372

21. A. Arenas, J. Du
h, A. Fernández, and S. Gómez, Size redu
tion of 
omplex net-

works preserving modularity, 2007 New Journal of Physi
s 9(6):176

22. Pajek proje
t, Us airports 
onne
ted by a dire
t �ight, http://vlado.fmf.uni-

lj.si/pub/networks/data/, 1997.

23. P. Gleiser and L. Danon, Community stru
ture in so
ial and biologi
al networks,

2003 Advan
es in Complex Systems 6:565�573

24. R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, and A. Arenas, Self-similar


ommunity stru
ture in a network of human intera
tions, 2003 Physi
al Review E

68(6):065103

25. D. J. Watts and S. H. Strogatz, Colle
tive dynami
s of "small-world" networks,

1998 Nature 393(6684):440�2

26. D. Bu, Yi. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling,

N. Zhang, G. Li, and R. Chen, Topologi
al stru
ture analysis of the protein-protein

intera
tion network in budding yeast, 2003 Nu
lei
 A
ids Resear
h 31(9):2443�2450

27. J. Grossman, The erdös number proje
t, http://www.oakland.edu/enp/, 2007

28. KDD, Cornell kdd 
up, http://www.
s.
ornell.edu/proje
ts/kdd
up/, 2003

29. M. Boguñá, R. Pastor-Satorras, A. Díaz-Guilera, and A. Arenas, Models of so
ial

networks based on so
ial distan
e atta
hment, 2004 Phys. Rev. E 70(5):056122

30. M. E. J. Newman. The stru
ture of s
ienti�
 
ollaboration networks, 2001 Pro-


eedings of the National A
ademy of S
ien
es of the United States of Ameri
a

98(2):404�409

31. J. Leskove
, J. Kleinberg, and C. Faloutsos, Graph evolution: Densi�
ation and

shrinking diameters, 2006 ACM Transa
tions on Knowledge Dis
overy from Data

1(1):2�es

32. J. Leskove
, K. J. Lang, A. Dasgupta, and M. W. Mahoney, Community stru
-

ture in large networks: Natural 
luster sizes and the absen
e of large well-de�ned


lusters, 2008 Internet Mathemati
s 6(1):66

33. E. Cho, S. A. Myers, and J. Leskove
, Friendship and mobility: user movement

in lo
ation-based so
ial networks, 2011 Pro
eedings of the 17th ACM SIGKDD

International Conferen
e on Knowledge Dis
overy and Data Mining, pages 1082�

1090

34. F. Radi

hi, C. Castellano, F. Ce

oni, V. Loreto, and D. Parisi, De�ning and

identifying 
ommunities in networks, 2004 Pro
eedings of the National A
ademy of

S
ien
es of the United States of Ameri
a 101(9):2658�2663

35. L. Danon, A. Díaz-Guilera, J. Du
h, and A. Arenas. Comparing 
ommunity

stru
ture identi�
ation, Journal of Statisti
al Me
hani
s: Theory and Experiment

2005(09):P09008, September 2005.

30



31



A Recombination-Based Tabu Search Algorithm

for the Winner Determination Problem

Ines Sghir1,2, Jin-Kao Hao1, Ines Ben Jaafar2, and Khaled Ghédira2

1 LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France
2 SOIE, ISG, Université de Tunis, Cité Bouchoucha 2000 Le Bardo, Tunis, Tunisie

Abstract. We propose a dedicated tabu search algorithm (TSX_WDP)
for the winner determination problem (WDP) in combinatorial auctions.
TSX_WDP integrates two complementary neighborhoods designed re-
spectively for intensification and diversification. To escape deep local
optima, TSX_WDP employs a backbone-based recombination opera-
tor to generate new starting points for tabu search and to displace the
search into unexplored promising regions. The recombination operator
operates on elite solutions previously found which are recorded in an
global archive. The performance of our algorithm is assessed on a set of
500 well-known WDP benchmark instances. Comparisons with five state
of the art algorithms demonstrate the effectiveness of our approach.

Keywords: Winner determination problem; Tabu Search; Solution re-
combination; Combinatorial optimization; Heuristics.

1 Introduction

An auction involves an auctioneer wishing to maximize his/her selling revenue
and a set of bidders wishing to minimize their cost according to their valuations
of the items that they want to acquire. Examples of the most widely known
auctions are the English auction, the Holland’s auction, the Sealed envelope
auction, and the Vickrey auction [12]. These auctions typically handle one item
per sell.

Combinatorial auctions are multi-item auctions, which allow bids on items
combinations [5, 11]. In a combinatorial auction, we are given a set of items
exposed to buyers. Buyers offers different bids, each bid being defined by a
subset of items with a price (bidder’s valuation). Two bids are conflicting if
they share at least one item. The Winners Determination Problem (WDP) is
to determine a conflict-free allocation of items to bidders (the auctioneer can
keep some of the items) that maximizes the auctioneer’s revenue defined as the
sum of the valuations of the winning bids. The WDP is known to be a NP-hard
problem with a number of practical applications like e-commerce, games theory
and resources allocation in multi-agents systems [21, 11].

Formally, given a set of items M = {1, 2, ...,m} and a set of n bids N =
{1, 2, ...n}. Each bid j is a tuple < Sj , Pj > where Sj is a subset of items
covered by bid j, and Pj , the price of bid j. Let B be a m × n binary matrix
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such that Bij = 1 if object i ∈ Sj , Bij = 0 otherwise. Furthermore, define
a decision variable xj for each bid j such that xj = 1 if bid j is a winning
bid, 0 otherwise. Then, the WDP can be stated as the following binary integer
optimization problem.

Maximize f(x) =
∑

j∈N

Pjxj (1)

subject to ∑

j∈N

Bijxj ≤ 1, i ∈ M (2)

The objective function (1) allows to maximize auctioneer’s gain calculated by
the sum of prices of the winning bids while the constraints expressed by formula
(2) ensure that an item appears at most in one winning bid.

The computational challenge of the WDP and its practical applications have
motivated a number of solution approaches including exact methods [18] and
metaheuristic methods. Representative examples of exact methods include: Branch-
on-Items (BoI), Branch-on-Bids (BoB) [19], Combinatorial Auctions BoB (CABoB)
[20], Combinatorial Auction Structural Search (CASS) [6] and Combinatorial
Auctions Multi-unit Search (CAMUS) [15]. A dynamic programming approach
is introduced in [17] while a linear programming method is investigated in [16].
An algorithm based on integer programming is shown in [1], a constraint pro-
gramming approach is used to solve a particular combinatorial Vickrey auction
[9]. On the other hand, several stochastic methods were proposed for the WDP.
They include a local search method named Casanova [10], a hybrid algorithm
combining simulated annealing with Branch-and-Bound (SAGII) [8], and more
recently a tabu search method [3] and a memetic algorithm [4].

The rest of the paper is organized as follows. Section 2 describes the proposed
algorithm which is based on two complementary neighborhoods and a recombi-
nation operator. Experimental results are reported in section 3 and compared
with five representative algorithms for the WDP. Finally, section 4 concludes the
paper.

2 Recombination-Based Tabu Search for the WDP

TSX_WDP uses two complimentary move operators to explore effectively the
search space and a recombination operator as an additional means to escape
deep local optima. In this section, we presents in detail these key components.

2.1 The solution representation

A candidate solution is represented by an allocation A (a dynamic vector). Each
element of this allocation A receives the winning bid. Each bid is an object
composed of the list of items and the associated prices.

2
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2.2 The evaluation function

The objective function defined in equation (1) is used to measure the quality
of a candidate solution. So if an allocation A contains k bids {B1, B2, ..., Bk},

(Bi =< Si, Pi >, 1 ≤ i ≤ k, k ≤ n), its quality is just equal to f(A) =
∑k

i=1 Pi,
i.e., the sum of the valuations of the winning bids. Given two candidate solutions,
the one with a higher objective value is considered to be better. This relation is
used to compare neighboring solutions which are developed below.

2.3 The basic move operators and the neighborhoods

Our TSX_WDP algorithm explores the search space by using two complemen-
tary neighborhood relations which are defined by an intensification move oper-
ator and a perturbation move operator.

Intensification move The intensification move operator chooses bids among
candidate bids to be inserted in the current allocation A. During one iteration of
the algorithm, several bids can be selected if they improve the current allocation.
To create a neighboring allocation, the following steps are followed:

– The initial candidate bids are sorted according to their utility prices;
– For each candidate bid Bx, a binary gain function is used to verify if the bid

can increase the revenue of the current allocation when the bid is inserted;
– Let Q be the set of winning bids that are in conflict with the current can-

didate bid Bx, Let f(Q) be the revenue of the set of winning bids Q, and
f(Bx) the price of the candidate bid Bx. The gain function returns true if
f(Q) < f(Bx) and returns false otherwise;

– Based on the function f , a candidate bid Bx can be added to the current
allocation only if its price f(Bx) is higher than the revenue of other winning
bids which are conflicting with Bx in the current allocation (i.e., the gain
function is true);

– The gain of Bx, when it is selected to be added in the current allocation, is
calculated by: Gain(Bx) = f(A)− f(Q) + f(Bx);

– When a bid Bx is inserted in the current allocation A, the bids of Q which
are conflicting with Bx are removed from A;

– The steps mentioned previously are iterated until all the initial candidate
bids are visited and possibly added in the current allocation A.

Perturbation move The perturbation move operator chooses randomly one
candidate bid from the available ones. This move is activated only if no bid among
the candidate bids can improve the current solution. In fact, the application of
the intensification move can make the search to be trapped into local optima
during the search process, when no more bid can be found that improves the
revenue of the current allocation. Notice that this move operator can decrease
temporarily the revenue of the solution, but hopefully, it helps the search to
escape local optima by displacing the search to new zones of the search space.
This move operator plays thus a diversification role.

3
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2.4 Tabu list and tabu tenure management

Tabu search uses a tabu list to forbid recently visited solutions from being re-
visited. The TSX_WDP algorithm considers the following general prohibition
rule: a bid that is chosen to be inserted in the current allocation A (by an inten-
sification move or a perturbation move) is forbidden to be removed for the next
tt iterations (called tabu tenure). tt is calculated dynamically by the function
proposed in [7]: tt = L+⋋+ f(A) where L is randomly chosen from the interval
[0, 9] and ⋋ is empirically fixed to 0.6. Experimentations show this dynamic tabu
tenure is robust and allows TSX_WDP to reach high quality solutions. Notice
that we permit a move to be accepted in spite of being tabu if the move leads to
a solution better than any found so far. This is called the aspiration criterion.

2.5 Elite solution archive

The proposed algorithm also relies on a solution recombination operator (see
next section) which aims to blend elite solutions (high-quality local optima).
This technique is based on an archive P which is built as follows. During the
search, if the current best solution A∗ is not improved within a fixed number
p of consecutive iterations, A∗ is considered as a good local optimum and is
added into the archive P . At the same time, this allocation corresponds to a
deep local optimum which is difficult to escape. For this purpose, we trigger
a recombination operation to create a new starting point for the tabu search
procedure, which is explained in the next selection.

2.6 Recombination operator

The recombination operator aims to transfer good properties of parents to their
descendants. The recombination pseudo-code is given in Algorithm 1.

Algorithm 1 The recombination operator

Require: two parent solutions I1 and I2
Ensure: An offspring solution I0
1: I0 ← ∅, D1 ← ∅, D2 ← ∅
2: Sort the bids in each parent according to their prices
3: while I1 and I2 are not empty do

4: D1 ← first_element(I1)
5: D2 ← first_element(I2)
6: if D1 and/or D2 are not conflicting with the bids in I0, add D1 and/or D2 to I0
7: remove D1 from I1
8: remove D2 from I2
9: end while

10: Return Child I0

Given two parent allocations I1 and I2 from the elite solution archive which
share the highest number of bids, the recombination operator constructs the

4
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offspring I0 in k steps until all the bids of the two parents are visited. Our
recombination operator is inspired by the idea of backbone used in [2, 22]. In
the first step, the set of bids shared by the parents are identified and directly
transfered to I0. Then the following steps are performed:

– Choose the bid with the lowest price from each parent (lines 4 and 5, Algo-
rithm 1).

– The two selected bids are candidate bids that can be inserted in the offspring,
if they are not conflicting bids. This is done by conserving the best bids with
the highest revenue (lines 6 and 7, Algorithm 1).

– Remove the selected bids from their parents, even if they are not inserted in
the offspring (lines 9 and 10, Algorithm 1).

– Repeat the previous steps until all the bids of the parents are examined and
removed.

An example of this recombination operation is provided in Fig. 1.

2 7 5 8 11I1

2 4 116I2

7 5 8

4 6

I1

I2

5 8

6

I1

I2

8I1

I2

2 11I0 2 11 7 4 2 11 7 4 6 2 11 7 4 6 8I0 I0 I0

II1={7}
II2={4}
I0={2, 11, 7, 4} 
Iteration2 { the fort bids 2, 11, 7 
and 4  are not conflicted bids, 
so they are assigned to I0}

II1={5}
II2={6}
I0={2, 11, 7, 4, 6} 
Iteration 3 { the bid 5 is a conflicted 
bid, so it is discarded from I0}

II1={8}
II2={}
I0={2, 11, 7, 4, 6, 8} 
Iteration 4

A simple example of WDP that contains 11 bids and 16 items:
Bid 1={{1, 2, 3}; 50}, Bid 2={{1, 2, 4}; 100}, Bid 3={{2, 4}; 200}, Bid 4={{3, 5, 6}; 200}, Bid 5={{6, 7, 8}; 300}, Bid 6={{7, 8}; 200}, Bid 7={{9, 10, 11}; 150},
Bid 8={{12, 13, 14}; 400}, Bid 9={{7, 9}; 200}, Bid 10={{9, 10, 11}; 250}, Bid 11={{15,16}; 450}.

I0=I1 and I2={2, 11}
Iteration 1

Fig. 1. An example of the recombination operator

2.7 The TSX_WDP algorithm

The general TSX_WDP algorithm is formalized in Algorithm 2. The algorithm
starts with an empty allocation in which no bid is chosen and tries to improve it
by looking for a better solution in the current neighborhood. In each iteration,
the best authorized bids are selected among the candidate bids to be included
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in the current allocation. This is achieved with the intensification move (lines
7-9 of Algorithm 2). When no bid can be found to increase the revenue with the
intensification move, TSX_WDP switches to the perturbation move by choosing
a random bid from the candidate bids (line 11 of Algorithm 2). In both cases,
the choice of the bids depends on the status of the tabu list which is updated
after each move. Any conflicting bids in the current allocation, when new bids
are considered, are removed (lines 13 and 14 of Algorithm 2). The search process
is repeated for a fixed number Itermax of iterations. During these Itermax it-
erations, if the current best solution cannot be updated for consecutive p (fixed
experimentally) moves, the best local optimum found so far is inserted into the
archive P and the recombination operator is activated to generate a new starting
point for a new round of the tabu search procedure (lines 20-25 of Algorithm 2).

2.8 Discussion

The proposed TSX_WDP algorithm distinguished itself from the existing heuris-
tic approaches by several features. First, its tabu search procedure is based on
two complementary move operators to generate neighboring solutions. In partic-
ular, the intensification move can add several bids (instead of a single bid like in
most local search based heuristics). The tabu search procedure adopts a dynamic
tabu tenure which is missing in the existing methods. Second, the recombination
operator is based on the idea of backbone which proves to be quite useful for the
WDP.

3 Experimentation

This section gives experimental results of the proposed algorithm which is im-
plemented in Java. The program is run on a computer with a Core I5 2.5GHz,
8GB of RAM. To assess our TSX_WDP algorithm, we run TSX_WDP on var-
ious benchmarks of diverse sizes defined in [13]. Theses benchmarks take into
account several factors like the prices, bidders preferences and object distribu-
tion on bids. They can be divided into five groups where each group contains
100 instances.

-REL 500-1000: From in101 to in200: m = 500, n = 1000

-REL 1000-1000: From in201 to in300: m = 1000, n = 1000

-REL 1000-500: From in401 to in 500: m = 1000, n = 500

-REL 1000-1500: From in501 to in 600: m = 1000, n = 1500

-REL 1500-1500: From in601 to in 700: m = 1500, n = 1500

We calibrated the parameters of the proposed algorithms by an experimental
study: The maximum number of iterations (itermax) is fixed to 200 and the
parameter responsible for the tabu tenure ⋋ is fixed to 0.00006. Each of the 500
instance is solved 40 times independently by the TSX_WDP algorithm with
different random seeds.

6
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Algorithm 2 TSX_WDP for the Winners Determination Problem

Require: A matrix M , a parameter Itermax, Vector of bids B, Parameter p
Ensure: A vector of winning bids A∗ and its revenue f(A∗)
1: Iter← 0 {Iteration counter}, Initiate tabu_list
2: A∗ ← A← ∅
3: opt← 0 {An counter that is incremented if the current solution does not improve

in two consecutive iterations; opt returns to 0, when it exceeds the value p, after
activating the recombination operator}

4: initialize tabu_list
5: P ← ∅ {Archive of the best local optima encountered A∗}
6: while (Iter < Itermax) do

7: Construct neighborhoods from A based on the intensification move
8: if There exists an intensification move then

9: Choose an overall best allowed neighbor A′ according to max gain criterion
and by considering M {to remove from A′ any conflicting bid) {Section 2.3}

10: else

11: Apply the perturbation move {Section 2.3} by choosing a random bid from
B to create a neighbor A′

12: end if

13: A← A′ (Move to the selected neighboring solution A′)
14: Update tabu_list {Section 2.4} and B {delete the winner bids from B and add

the looser bids in it}
15: if f(A) > f(A∗) then

16: A∗ ← A
17: else

18: opt← opt+ 1
19: end if

20: if opt = p then

21: Add A∗ to the Archive P
22: I1, I2 ← Parent_Selection(P ) {Section 2.5}
23: I0 ← Recombination_Operator(I1, I2) {Section 2.6}
24: A← I0
25: opt← 0
26: end if

27: Iter← Iter+ 1
28: end while

29: return (A∗ and f(A∗))

7
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3.1 Experimental results

In Table 1, we present the computational results of the TSX_WDP algorithm
on the five groups of benchmarks. Given that there are 500 instances, we show
only some results of each group, like in some recent papers [4]. For each pre-
sented instance, the following computational statistics are indicated: the maxi-

mum revenue obtained by the TSX_WDP algorithm over the 40 independent
trials (Rbest), the average revenue over the 40 trials (Ravg), the worst revenue

over the 40 trials (Rworst) and the average CPU time in seconds (AvgTime).
As one can observe, the values of Ravg are very close to the values of Rbest
in most of cases and these two values are even equal for certain instances (for
example for in101, in102, in205 etc.). This table shows the proposed algorithm
can consistently reach high quality solutions for the tested problems.

Table 1. Results obtained by TSX_WDP for WDP benchmarks

Instances Rbest Ravg Rworst AvgTime Instance Rbest Ravg Rworst AvgTime

in101 69585.298 69585.298 69585.298 88 in201 81557.742 80383.277 79331.63 56

in102 72518.222 72518.222 72518.222 76 in202 89289.573 86815.261 81291.193 52

in103 69730.618 69475.485 65903.632 75 in203 86239.213 83941.410 77220.427 54

in104 71327.641 70765.941 65948.396 78 in204 84879.397 84374.869 76822.810 55

in105 73351.044 71570.624 68899.994 93 in205 83748.837 83748.837 83748.837 57

in401 77417.482 77191.182 70628.481 12 in501 83738.040 83506.552 82605.443 107

in402 76273.336 76153.051 74469.073 10 in502 83297.340 82546.590 76751.565 82

in403 74843.958 74356.247 69989.28 10 in503 83718.749 82017.955 78112.719 81

in404 78761.690 78597.224 77939.364 10 in504 83944.901 82772.535 77217.558 76

in405 75915.900 75640.510 74899.125 10 in505 83071.930 81876.413 78909.275 66

in601 107246.248 102862.848 96840.461 117 in602 99668.269 97854.579 91452.904 78

in603 98577.454 96567.287 95219.36 75 in604 101713.602 100786.326 99395.413 78

3.2 Comparative results for the WDP

In order to further show the effectiveness of the TSX_WDP algorithm, we
present a comparative study with five state of the art algorithms from the liter-
ature: Casanova [10], SAGII [8], SLS [3], TS [3], MA [4].

In Table 2, we show the general comparative results for each group. In this
table, rows µ correspond to the average of best objective value of the 100 in-
stances in each group. Rows time represent the average time to reach the best
solution. δ(%) is the deviation of the TSX_WDP algorithm with respect to
each reference algorithm. The deviations are calculated respectively as follows:
µTSX_WDP − µalgo_X)/µTSX_WDP where algo_X is one of the five reference
algorithms. Since the compared algorithms are implemented in different lan-
guages and run on different plateforms, the comparison is focused on solution
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quality that can be reached by each algorithm. The computing time is provided
only for indicative purposes. The results of the reference algorithms are extracted
from the corresponding papers except the results of Casanova which are from
[8].

Table 2. Comparative results of TSX_WDP with Casanova, MA, SLS, TS, SAGII on
the WDP benchmarks: µ is the average of the best objective value of the 100 instances
in each group. time is the average time to reach the best solution.

Test Set 100 instances REL-500-1000 REL-1000-500 REL-1000-1000 REL-1000-1500 REL-1500-1500

TSX_WDP Time 74.19 9.45 48.98 75.92 90.61

µ 69647.975 75274.184 86786.159 85577.806 103178.732

Casanova Time 119.46 57.74 111.42 168.24 165.92

µ 37053.78 51248.79 51990.91 56406.74 65661.03

δTSX/Casanova(%) 46.79 31.91 40.09 34.08 36.36

TS Time 91,07 25.84 104,30 223,37 175.68

µ 65286.94 71985.34 81633.63 77931.41 97824.64

δTSX/TS(%) 6.26 4.36 5.93 8.93 5.18

SLS Time 22.35 5.91 14.19 14.97 16.47

µ 64216.14 72206.07 82120.31 79065.08 98877.07

δTSX/SLS(%) 7.79 4.07 5.37 7.61 4.16

MA Time 56.64 14.98 33.05 24.51 28.22

µ 65740.25 73604.62 83304.20 79644.64 99957.96

δTSX/AM (%) 5.61 2.21 4.01 6.93 3.12

SAGII Time 38.06 24.46 45.37 68.82 91.78

µ 64922.02 73922.10 83728.34 82651.49 101739.64

δTSX/SAGII(%) 6.78 1.79 3.52 3.41 1.39

Table 2 discloses that TSX_WDP gives an improvement between 31% and
47% in solution quality compared to Casanova. TSX_WDP finds better solu-
tions with shorter times than Casanova. TSX_WDP shows good performances
compared to SLS. The improvement is between 4% and 8%. The results of
TSX_WDP are better than TS in quality and in time (with an improvement rate
between 4% and 9%). TSX_WDP outperforms MA. The deviation is between
2% and 7%. Finally, TSX_WDP produces better results than SAGII which is
currently the most successful algorithm for the WDP and is based on sophisti-
cated Branch-and-Bound and preprocessing tools (The deviation is between 1%
and 7%). Thus, we can conclude that TSX_WDP discovers new best results for
the five groups of benchmarks.

To further illustrate the results of Table 2, we consider the comparative
curves of Fig. 2. The X-axis of the curves represent the 5 groups of the WDP
benchmarks and their Y-axis are the gain of each group (µ). These curves confirm
that TSX_WDP competes favorably with each of the reference algorithms for
each group of instances.
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Fig. 2. A comparison of the solution quality between TSX_WDP, Casanova, TS, SLS,
MA and SAGII

4 Conclusion

In this work, we have presented a tabu search algorithm for the winner de-
termination problem based on a two different neighborhood structures and a
recombination operator. The algorithm uses the intensification move to improve
progressively the quality of the current solution. When the solution cannot be
further improved, the TSX_WDP algorithm switches to a perturbation move by
choosing a random bid. In both cases, a tabu list is used to prevent the search
from revisiting the previous examined solutions. To escape deep local optima,
the proposed algorithm employs a backbone-based recombination operator which
relies on an elite solution archive which is built and updated during the search.
This recombination operator generates new starting points for tabu search with
the aim of leading the algorithm into new promising search areas. The proposed
TSX_WDP algorithm is evaluated on a set of 500 benckmark instances. The
comparative study with five reference algorithms shows the proposed algorithm
is able to reach solution of very high quality.
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Abstract. The aim of this paper concerns several propositions to improve pre-
vious works based on a combination between metaheuristic and cellular autom-
aton for the generation of 2D shapes. These improvements concern both the re-
duction of the search space and of the computational time. The first proposition 
concerns a new approach which delegates the determination of the number of 
generation to the cellular automaton. The second proposition consists in the re-
duction of the number of times the cellular automaton is requested. The last 
proposition concerns the adaptation of the method by exploiting the properties 
of the expected shape, in particular in case of symmetric shapes. Obtained re-
sults show that these propositions permit to improve the results as well as the 
computational times and the quality of the solution.   

Keywords. Binary cellular automaton, metaheuristic, neighbourhood system, 
mutual information, search space, symmetric shapes. 

1 Introduction 

Cellular automata were introduced by Stanislas Ulam and John Von Neumann in 
an attempt to model natural physical and biological systems [1, 2]. They are discrete 
dynamic systems in space and time with simple local interactions but complex global 
behaviour [3]. They can be used to study complex dynamic systems such as self-
organization phenomena [1], development of tumour [4], fire forest propagation [5], 
diffusion phenomena [6] and shapes generation [7]. 

Cellular automaton consists in a regular lattice of cells. The communication be-
tween cells is limited to local interaction. Each cell can take a state chosen among a 
finite set of states. This state can evolve over time depending on the states of its 
neighbour determined by the interaction system through a local evolutionary rule. The 
set of these local rules forms a transition function of the cellular automaton. 

In this paper, we consider the combination of cellular automaton and simulated an-
nealing to generate 2D binary preset shapes, also called inverse problem. This work 
comes within the scope of preliminary studies of simulation of morphogenesis process 
with the objective to simulate, by cellular automata, the generation of full organ from 
a single cell. The morphogenesis is an important process which allows living things to 
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develop organised structures thanks to the interactions of cells either among them-
selves or with their environment. 

In the next part, we present this inverse problem and a first approach to solve it. 
The objective of this paper is to propose ways to address the drawbacks of this first 
approach: to reduce the size of the solution, to accelerate the computational time and 
to take into account the properties of the expected shape. These points are presented 
in the third part. The fourth part gives numerical results. 

2 Context 

2.1 Cellular automaton inverse problem 

In order to obtain a given configuration of cellular automaton or behaviour after a 
given number of generations, it is very important to determine the initial configuration 
and/or the transition function allowing this configuration or this behaviour. This prob-
lem is known as the inverse problem. The inverse problem of deducing the local rules 
from a given configuration or global behaviour is extremely hard [8].  

Several works in the literature propose to use the evolutionary computation tech-
niques such as genetic algorithm to solve this inverse problem. These problems con-
cern the computational tasks (density classification and synchronisation) [9, 10] and 
the generation of full shapes [2, 7]. 

In this paper, we consider the generation of any shapes: full shapes and hollow 
shapes (shapes with holes). The generation of hollow shapes (shapes with holes) is 
really important in order to consider biological phenomena where living cells may 
die. 

The generation of shapes by cellular automaton is a particular case of the inverse 
problem of the cellular automaton. Two problems arise: the first one is how to choose 
a transition function and the second one is how often to apply this transition function 
(number of generations) allowing to the cellular automaton to evolve from an input 
configuration (initial shape) toward output configuration (expected shape). 

The Fig. 1 illustrates the studied problem: how to obtain a shape Sh* from an ini-
tial shape Sh0 with a cellular automaton? In other words, the objective is to determine 
a transition function F* and a number of generation ng* which maximize a similarity 
criterion C(Sh, Sh*): 

 ( )*

,

,

* *

* * *

,
( , ) determine  and suchas ( , )max F ng

F ng
F ng

C Sh ShF ng C Sh Sh =  (1) 

where ShF,ng is the shape obtained after applying ng times the transition function F. 
 

 

Fig. 1. Inverse problem. 

Initial shape Sh0 (t = 0) Desired shape Sh* (t = ?) 
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2.2 A first approach  

A first approach has been presented in [15] and consists in the combination of sim-
ulated annealing and cellular automaton. This approach uses a binary solution encod-
ing composed of two parts: one for the transition function F and one for the number 
of generations ng. This encoding uses the notion of combination of states (states of 
the cells of the interaction system) and is represented by Fig. 2 where S(i)(c) represents 
the state of cell c at time t+1 according to the combination (i) at time t. Nc=  kn is the 
number of combination of states in the interaction system where n is the size of the 
interaction system and k is the number of states. The size of the interaction system is 
the number of considered neighbour cells. 

Transition function  Number of generations Ng 
  

S(0)(c)  S(1)(c) . . .  S(Nc-1)(c) Binary code of Ng 

Fig. 2. Solution encoding. 

Fig. 3 shows an example of a solution with Von Neumann interaction system with 
five neighbor cells (n = 5): 

• the transition function describes the local rule applied to each combination of the 
interaction system. The sixteen first combinations are the local evolutionary rules 
when the observed cell is empty. The sixteen next combinations describe the local 
evolutionary rules when the observed cell is occupied. The combination number is 
given in parenthesis. For each combination, the state of the cell and its neighbor 
cells is detailed. 

• the number of generations Ng is equal to 4. 

 

Fig. 3. Example of solution X. 

Fig. 4 shows the evolution of the cellular automaton over time by using the solu-
tion given in Fig. 3. The last shape will be compared to the desired shape. 
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Fig. 4. Evolution of the cellular automaton over times. 

The simulated annealing starts with an initial solution randomly generated. With 
this solution, the cellular automaton generates a shape ShF,ng that is compared to the 
expected shape Sh*. At each iteration, the simulated annealing chooses randomly a 
new solution in the neighbourhood system of the current solution. The cellular autom-
aton then generates a new shape and the new solution is accepted according to an 
acceptance criterion. The principle is depicted by Fig. 5. 

 

Fig. 5. First approach (named (F, Ng)). 

Three neighbourhood systems have been proposed depending on the number of 
modified elements. The modification of an element consists in choosing randomly 
and uniformly a new state among the possible states. 

• ΓΓΓΓ1 a single element is modified, 
• ΓΓΓΓ2 two elements are modified, 
• ΓΓΓΓM  at each iteration, the number of elements to modify is randomly chosen be-

tween 1 and M.  

To compare two shapes (Sh1 and Sh2), two similarity criteria have been proposed:  

Shx

t = Ng = 4t = 0 t = 1 t = 2 t = 3
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• ID  the number of identical cells in the two shapes,  
• MI  the mutual information, specially used in the image registration domain and 

information theory [11] takes into consideration all possible transitions from one 
state to another. These transitions are given by the joint probabilities. When two 
shapes are identical, the mutual information is maximal. The mutual information is 
given by: 

 ( ) ( ) ( )
( ) ( )

, , 1, 2
1, 2 , , 1, 2 ln

, 1 , 2a b

p a b Sh Sh
MI Sh Sh p a b Sh Sh

p a Sh p b Shσ σ∈ ∈

 
=   

 
∑∑  (2) 

─ σ is the number of possible cell states, 
─ L is the grid of the cellular automaton, 
─ p(a,b,Sh1,Sh2)=Card((i,j) ∈ L such as (Sh1i,j=a)∧( Sh2i,j=b)/Card((i,j) ∈ L) is 

the joint probabilities to have a state a in the shape Sh1 and the state b in the 
shape Sh2. 

─ p(a,Sh)=Card((i,j) ∈ L such as Shi,j=a) /Card((i,j) ∈ L) is the marginal probabil-
ity to have a state a in the shape Sh. 

2.3 Conclusion 

The size of the solutions space Ω is the product of the number of possible transition 
functions by the maximum number of iterations Ngmax expressed in the solution 
encoding (size of the second part). 

 |Ω| = kNc * Ngmax (3) 

The number of possible transition functions kNc depends on the size of the transi-
tion function Nc which depends on the size of the interaction system and the number 
of possible states of cell. When we use a cellular automaton with two states and 
Moore interaction system composed of 8 neighbour cells and the observed cell, the 
size of the solution is 512 and the number of possible transition functions is 2512. 

Table 1 presents the size of the solution space according to the number of states of 
the cellular automaton k, the considered interaction system (Moore or Von Neumann) 
and the maximum number of generation coded in the solution. 

 
  Von Neumann Moore 
 Ngmax 3 7 15 3 7 15 
 2 1,72E+10 3,44E+10 6,87E+10 5,36E+154 1,07E+155 2,15E+155 
k 3 7,85E+116 2,35E+117 7,06E+117 ∞ ∞ ∞ 
 4 ∞ ∞ ∞ ∞ ∞ ∞ 

Table 1. Size of solution space. 
 

The size of search space increases exponentially with the number of states (k) and 
Ngmax. 

Obtained results are promising, but some improvement should be done particularly 
in terms of computation time and search space.  
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3 Proposition 

3.1 A new approach to reduce the size of solution 

A possible way to reduce the search space is to delegate the determination of Ng to 
the cellular automaton. To do so, we propose a solution encoding based only on the 
transition function (Fig. 6).  

Transition function 

 

S(0)(c)  S(1)(c) . . .  S(Nc-1)(c) 

Fig. 6. Proposed solution encoding. 

Fig. 7 gives the principle of the combination. At each iteration, the metaheuristic pro-
vides to the cellular automaton a solution X = (F) and the cellular automaton builds 
different shapes by applying Ngmax times this transition function F to the initial 
shape. At each generation i ∈ [1, Ngmax], the obtained shape Sh(F,i) is compared to the 
expected shape Sh*. The shape with the best similarity criterion C(ShX,Ng,Sh*) is rec-
orded: 

 ( ) ( )( )
max

* *
( , ) ( , )

1,

suchas , ,maxF Ng F i
i Ng

C Sh Sh C Sh Sh
=

=  (4) 

The cellular automaton returns to the metaheuristic C(ShX,Ng,Sh*) and the corre-
sponding number of generations Ng. 

 

Fig. 7. Proposed approach. 
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With this approach, the size of the solutions space Ω is equal to the number of pos-
sible transition functions. 

|Ω| = kNc 
The size of the solution space does not depend anymore from the maximum num-

ber of generations. 

3.2 To reduce the computational time 

In the first approach, at each iteration of the metaheuristic, the cellular automaton 
applies the transition function Ng times whereas in the proposed approach, the transi-
tion function is applied Ngmax times. The proposition reduces the search space but 
may increase the computational time.  

To face this drawback, we propose to reduce the number of times the cellular au-
tomaton is requested. In fact, during an iteration of the simulated annealing, the tran-
sition is applied Ngmax times and during these iterations some combinations are nev-
er used. Instead of requesting the cellular automaton at each iteration of the simulated 
annealing, we propose to use the cellular automaton only if the modification proposed 
by the simulated annealing can have a consequence on the similarity criterion. For 
that, when the transition function is applied, the used and unused combinations are 
identified. If a combination is not used and if this combination is selected during the 
next iteration of the simulated annealing algorithm, the modification is accepted with-
out using the cellular automaton as it is sure that the similarity criterion is not modi-
fied. As will be seen in the next part, such a modification permits to reduce signifi-
cantly the computational time (with a ratio from 3 to 6).  

3.3 To take into account the properties of the expected shape 

Another way to improve the results by reducing the search space is to adapt the 
proposed method by exploiting the properties of the expected shape. It is the case for 
symmetric shapes. In the literature, some works exploit the symmetry: 

-  In [12] the different types of symmetry in the spatiotemporal diagram of one 
dimensional cellular automaton are presented. In these works, the authors 
study the symmetric cellular automaton, but they have not interested to the in-
verse problem.  

- [13] is interested to seek cellular automata that perform universal computa-
tional tasks. The only binary automaton currently identified as supporting uni-
versal computation is “game of life”. Its ability to simulate a Turing machine 
is proved, using gliders (periodic patterns which, when evolving alone, are re-
produced identically after some shift in space), glider guns, and eaters. The 
glider gun emits a glider stream that carries information and creates logic gates 
through collisions. The eaters permit, by absorbing gliders, the creation of log-
ic circuits using any combination of logic gates. A transition function, which 
exploits symmetry, is used to search glider which can displaced in the space in 
all direction.   
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We have identified different symmetries (Fig. 8). 

 

Fig. 8. Type of symmetry. 

In order to reduce the search space of the metaheuristic, we propose a transition 
function which takes into account this symmetry. The symmetry in cellular automaton 
may be defined by the invariance of the evolutionary local rules according to a spatial 
transformation T of the interaction system state. The spatial transformation T of the 
interaction system is a permutation of the order of state of cells in the interaction sys-
tem. 

To exploit this symmetry, the combinations of the interaction system state which 
are symmetric at the generation t should have the same state at the generation t+1. 
Then, an evolutionary local rule is applied to a set of symmetric combinations. These 
evolutionary local rules form the transition function of the cellular automaton.  

 
For example, in case of horizontal, vertical and rotational symmetry, the transition 

function in case of Von Neumann interaction system is reduced to 12 combinations 
instead of 32 combinations. The corresponding equivalent combinations of the inter-
action system state are given in Fig. 7.  

 

Fig. 9. Equivalent combinations of the interaction system state by horizontal, vertical and rota-
tional symmetry. 

Table 2 presents the effects of the modifications of the solution encoding on its size 
and on the size of the search space according to the considered interaction system 
(Moore or Von Neumann). We can see that the size of the search space is largely 
reduced whatever the symmetry. In case of Von Neumann interaction system, the 
reduction is so important that an enumeration of all solutions in the search space is 
possible. 

(1) (4) (3) (9) (7) (13)
0 0 0 1 0 1

0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 1

(0) 0 0 1 0 (5) (10) 1 0 (15)
0 0 1 1

0 0 0 (2) (8) (6) (12) 1 0 1 0 0 0 (13) (14) 1 0 1
0 0 1 0 1 0 1 1 1 1

0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0
1 0 1 0 0 1

(17) (20) (19) (25) (23) (29)
0 0 0 1 0 1

0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

(16) 0 0 1 0 (21) (26) 1 0 (31)
0 0 1 1

0 1 0 (18) (24) (22) (28) 1 1 1 0 1 0 (27) (30) 1 1 1
0 0 1 0 1 0 1 1 1 1

0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0
1 0 1 0 0 1
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  Von Neumann Moore 

  
Solution 

size 
Search 

space size 

Reduction 
factor of 
search 
space 

Solution 
size 

Search 
space size 

Reduction 
factor of 
search 
space 

Without symmetry 32 4.29E+09 -  512 1.34E+154 -  

Horizontal symmetry 24 1.68E+07 2.56E+02 288 4.97E+86 2.70E+67 

Vertical symmetry 24 1.68E+07 2.56E+02 288 4.97E+86 2.70E+67 

Horizontal and vertical symmetry 18 2.62E+05 1.64E+04 168 3.74E+50 3.58E+103 

Rotation with 90° 12 4.10E+03 1.05E+06 140 1.39E+42 9.62E+111 

Rotation with 180° 20 1.05E+06 4.10E+03 272 7.59E+81 1.77E+72 

Horizontal, Vertical and rotational 
symmetry  

12 4.10E+03 1.05E+06 102 5.07E+30 2.64E+123 

Table 2.Size of solution and search space. 

4 Results 

We have tested our method with the symmetric shapes given in Fig. 10. Five 
shapes are generated for each type of symmetry and for each interaction system (Von 
Neumann or Moore). The name of each shape depends on the interaction system used 
(“VN” for Von Neumann interaction system and “M” for Moore interaction system) 
and the type of symmetry (“H” for Horizontal symmetry, “V” for Vertical symmetry, 
“HV” for the Horizontal and Vertical symmetry, “HVR” for Horizontal, Vertical and 
Rotational symmetry, “R90-” for the Rotation by 90° and “R180-” for the Rotation by 
180°). With Von Neumann interaction system, R90 and HVR are equivalent so no 
shapes have been generated with R90. 

 

 

Fig. 10. Symmetric shapes. 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MR180-1 MR180-2 MR180-3 MR180-4 MR180-5

MR90-1 MR90-2 MR90-3 MR90-4 MR90-5MHV1 MHV2 MHV3 MHV4 MHV5

MHVR1 MHVR2 MHVR3 MHVR4 MHVR5MH1 MH2 MH3 MH4 MH5

MV1 MV2 MV3 MV4 MV5
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For each shape Sh*, we run the proposed algorithm by using either the mutual in-
formation (MI) or the number of identical cells (ID) as similarity criterion. For each 
shape generated with Von Neumann interaction system, we have considered the two 
interaction systems: Von Neumann and Moore. For each shape generated with Moore, 
we have only considered Moore interaction system. As Moore interaction system is an 
extension of Von Neumann system, it seems not suitable to consider Von Neumann 
interaction system to obtain shapes generated with Moore interaction system. 

The parameters of the simulated annealing are: number of iterations NIter = 5.106 
iterations, initial temperature T0 = 10 and final temperature Tf = 10-4.As the simulated 
annealing is a stochastic algorithm, five replications are done in each case. 

For the neighborhood system ΓM, M is fixed to 10. 

To compare our algorithms, we compute for each shape and each replication the ra-
tio R between the overlapping cells of the obtained shape and the expected shape and, 
the total number of cells of the expected shape. This ratio is given by: 

 ( ) ( ) ( )* * * *, , ,/Sh Sh Sh Sh Sh ShR ID ID=  (5) 

With Von Neumann interaction system, the optimal solution is obtained at each 
replication for all shapes generated with Von Neumann, taking into account or not the 
symmetry. The computational time of the proposed method for symmetric shape is of 
the order of second while it is of order of minute when the symmetry is not consid-
ered. These computational times are of course lower than those of the enumerative 
method. 

The results obtained by using Moore interaction system are presented in Table 3. 
For each symmetry, each kind of shapes (generated by Von Neumann or by Moore) 
and each similarity criterion, the frequency distribution of R is given. When the sym-
metry is considered, R is always superior to 90% and very often superior to 95% (in 
all cases for ID). So we have chosen to consider the classes [90%, 95%[, [95%,98%[ 
and [98%, 100%[. The column 100% is added in order to identify cases where the 
expected shape is obtained (optimal solution).  

In all cases, the results are improved by taking into account the symmetry. The 
number of identical cells as performance criterion seems to perform better than mutu-
al information but it is not obvious. Similarly, results obtained by the neighbourhood 
systems are similar and it is not easy not conclude. 

With the reduction of search space, we have improved the run time with a factor 
variable between 2 to 1512 for the shapes generated with Von Neumann interaction 
system when we use Von Neumann interaction system. 

With Moore interaction system, we have accelerated our algorithm with factor 
from 1.2 to 178. The run time depends on the similarity criterion and the type of 
symmetry.  
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   Shapes generated with Von Neumann Shapes generated with Moore 

   MI ID MI ID 
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H 

Without 
symmetry 

Γ1 0.12 0.32 0.4 0.16 0 0 0.92 0.08 0.16 0.16 0.64 0 0 0.4 0.44 0.16 

Γ2 0.08 0.32 0.44 0.16 0 0.08 0.8 0.12 0.16 0.2 0.56 0.04 0 0.28 0.72 0 

ΓM 0 0.28 0.52 0.2 0 0 0.84 0.16 0.16 0.24 0.56 0.04 0.04 0.2 0.68 0.08 

With 
symmetry 

Γ1 0 0 0.68 0.32 0 0 0.56 0.44 0.04 0.32 0.28 0.36 0 0.28 0.4 0.32 

Γ2 0 0 0.44 0.56 0 0 0.68 0.32 0 0.28 0.32 0.4 0 0.2 0.4 0.4 

ΓM 0 0 0.64 0.36 0 0 0.48 0.52 0 0.16 0.52 0.32 0 0.32 0.32 0.36 

V 

Without 
symmetry 

Γ1 0.12 0.32 0.4 0.16 0 0 0.68 0.32 0.16 0.16 0.64 0 0 0.08 0.72 0.2 

Γ2 0.08 0.2 0.48 0.24 0 0.12 0.48 0.4 0.04 0.24 0.56 0.16 0 0 0.8 0.2 

ΓM 0.08 0.28 0.4 0.24 0 0.08 0.52 0.4 0 0.16 0.76 0.08 0 0.04 0.84 0.12 

With 
symmetry 

Γ1 0 0 0.68 0.32 0 0 0.2 0.8 0.04 0.32 0.28 0.36 0 0 0.28 0.72 

Γ2 0 0.04 0.32 0.64 0 0.04 0.28 0.68 0 0 0.6 0.4 0 0 0.2 0.8 

ΓM 0 0 0.28 0.72 0 0 0.28 0.72 0 0 0.52 0.48 0 0 0.16 0.84 

HV 

Without 
symmetry 

Γ1 0 0.32 0.56 0.12 0.16 0.2 0.52 0.12 0.16 0.44 0.2 0.04 0.16 0.04 0.6 0.2 

Γ2 0 0.28 0.44 0.28 0.12 0.12 0.56 0.2 0.28 0.2 0.32 0.04 0.16 0.16 0.32 0.36 

ΓM 0 0.32 0.28 0.4 0.08 0 0.52 0.4 0.08 0.28 0.48 0 0.08 0.28 0.48 0.16 

With 
symmetry 

Γ1 0 0 0.12 0.88 0 0 0 1 0 0.16 0.12 0.72 0 0.2 0.04 0.76 

Γ2 0 0 0.04 0.96 0 0 0 1 0.04 0 0.2 0.76 0 0.12 0.12 0.76 

ΓM 0 0 0.04 0.96 0 0 0.04 0.96 0.04 0.08 0.08 0.8 0 0.16 0.04 0.8 

HVR 

Without 
symmetry 

Γ1 0.04 0.28 0.68 0 0 0 0.92 0.08 0.08 0.16 0.36 0.08 0.24 0.36 0.36 0.04 

Γ2 0 0.24 0.68 0.08 0 0 0.88 0.12 0.16 0.36 0.28 0.08 0.32 0.32 0.32 0.04 

ΓM 0 0.12 0.88 0 0.04 0 0.8 0.16 0.16 0.24 0.4 0 0.16 0.24 0.56 0.04 

With 
symmetry 

Γ1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

Γ2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

ΓM 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

Rot-180° 

Without 
symmetry 

Γ1 0 0.12 0.44 0.44 0 0.04 0.2 0.76 0.08 0.6 0.32 0 0.04 0.16 0.68 0.12 

Γ2 0 0.08 0.28 0.64 0 0 0.12 0.88 0 0.44 0.52 0.04 0 0.2 0.72 0.08 

ΓM 0 0.12 0.28 0.6 0 0 0.24 0.76 0 0.28 0.56 0.16 0.04 0.08 0.68 0.2 

With 
symmetry 

Γ1 0 0 0.16 0.84 0 0 0.16 0.84 0 0.2 0.52 0.28 0 0.16 0.48 0.36 

Γ2 0 0 0.12 0.88 0 0 0.08 0.92 0 0.12 0.32 0.56 0 0.12 0.36 0.52 

ΓM 0 0 0.16 0.84 0 0 0.16 0.84 0.04 0.08 0.44 0.44 0 0.04 0.4 0.56 

Rot-90° 

Without 
symmetry 

Γ1 - - - - - - - - 0.44 0.32 0.16 0 0.36 0.16 0.4 0.08 
Γ2 - - - - - - - - 0.4 0.28 0.2 0 0.24 0.32 0.44 0 
ΓM - - - - - - - - 0.28 0.4 0.24 0 0.24 0.32 0.36 0.08 

With 
symmetry 

Γ1 - - - - - - - - 0 0.16 0.28 0.56 0 0.04 0.24 0.72 
Γ2 - - - - - - - - 0 0.08 0.24 0.68 0 0.12 0.2 0.68 
ΓM - - - - - - - - 0 0.04 0.28 0.68 0 0.08 0.08 0.84 

Table3. Results obtained with symmetric shapes. 

5 Conclusion 

In previous works, we have proposed a combination of simulated annealing and 
binary cellular automata to generate 2D shapes. The principle was the following: at 
each iteration, the simulated annealing chooses randomly a new solution (a solution 
was composed of a transition function and a number of generations) in the neighbour-
hood system of the current solution. The cellular automaton then generated a new 
shape and the new solution was accepted according to an acceptance criterion.  Ob-
tained results were promising but some improvements appeared to be necessary.  

This is the aim of this paper in which different propositions are given in order to 
reduce the computational time and/or the search space. The first improvement con-
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cerns the proposition of a new approach which delegates the determination of the 
number of generation to the cellular automaton. The second proposition consists in 
the reduction of the number of times the cellular automaton is requested. The last 
proposition concerns the adaptation of the method by exploiting the properties of the 
expected shape, in particular in case of symmetric shapes. Obtained results show that 
these propositions permit to improve the results as well as the computational times 
and the quality of the solution.  

Our future works consist to test other neighbourhood systems and other objective 
functions, in order to improve our results. We envisage applying this method to gen-
erate complex shapes: from any initial shape, with a number of states greater than 2, 
3D shapes. Finally, we envisage adapting our method to generate a set of target 
shapes and to solve this problem as dynamic optimization problem. 
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Abstract. This paper investigates the correlation between the charac-
teristics extracted from the problem instance and the performance of a
simple evolutionary multiobjective optimization algorithm. First, a num-
ber of features are identified and measured on a large set of enumerable
multiobjective NK-landscapes with objective correlation. A correlation
analysis is conducted between those attributes, including low-level fea-
tures extracted from the problem input data as well as high-level features
extracted from the Pareto set, the Pareto graph and the fitness landscape.
Second, we experimentally analyze the (estimated) running time of the
global SEMO algorithm to identify a (1+ε)-approximation of the Pareto
set. By putting this performance measure in relation with problem in-
stance features, we are able to explain the difficulties encountered by the
algorithm with respect to the main instance characteristics.

1 Introduction

In single-objective black-box combinatorial optimization, fitness landscape anal-
ysis aims at apprehending the relation between the geometry of a problem in-
stance and the dynamics of randomized search algorithms. Understanding the
main problem-related features allows to explain the behavior and the perfor-
mance of such algorithms, the ultimate goal being to predict this performance
and adapt the algorithm setting to the instance being solved. Recently, the per-
formance of single-objective randomized search algorithms has been correlated
to fitness landscape features [2]. In this paper, we propose a general methodology
to analyze the correlation between problem features and algorithm performance
in black-box 0–1 evolutionary multiobjective optimization. To the best of our
knowledge, this is the first time that such an analysis is conducted in multiob-
jective optimization.

We first identify a number of existing and original multiobjective problem
features. They include low-level features extracted from the problem input data
like variable correlation, objective correlation, and objective space dimension,
as well as high-level features from the Pareto set, the Pareto graph and the
ruggedness and multimodality of the fitness landscape. Some of them are here
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proposed for the first time. They consist of a simple autocorrelation function,
based on a local hypervolume measure, and allowing to estimate the ruggedness
of the fitness landscape. We report all these measures on a large number of
enumerable multiobjective NK-landscapes with objective correlation (ρMNK-
landscapes), together with a correlation analysis between them.

Next, we conduct an experimental analysis on the correlation between in-
stance features and algorithm performance. To do so, we investigate the esti-
mated running time of a simple evolutionary multiobjective optimization al-
gorithm, namely global SEMO [8], to identify a (1 + ε)-approximation of the
Pareto set. In particular, the original hypervolume-based autocorrelation func-
tions appear to be the features with the highest correlation with the algorithm
performance. Overall, the running time of the algorithm is impacted by each
of the identified multiobjective problem feature. Our analysis shows their rel-
ative importance on the algorithm efficiency. Moreover, taking the features all
together allows to better explain the dynamics of randomized search algorithms.

The paper is organized as follows. Section 2 details the background infor-
mation related to fitness landscape analysis, multiobjective optimization and
ρMNK-landscapes. In Section 3, low-level and high-level instance features are
identified, and quantitative results, together with a correlation analysis, are re-
ported for ρMNK-landscapes. Section 4 presents the experimental setup of global
SEMO and discusses the correlation between the problem features and the esti-
mated running time of global SEMO. Section 5 concludes the paper and discusses
further research.

2 Preliminaries

2.1 Fitness Landscape Analysis

In single-objective optimization, fitness landscape analysis allows to study the
topology of a combinatorial optimization problem [15], by gathering important
information such as ruggedness or multimodality. A fitness landscape is defined
by a triplet (X,N , φ), where X is a set of admissible solutions (the search space),
N : X → 2X is a neighborhood relation, and φ : X → IR is a (scalar) fitness
function, here assumed to be maximized. A walk over the fitness landscape is
an ordered sequence 〈x0, x1, . . . , x`〉 of solutions from the search space such that
x0 ∈ X, and xt ∈ N (xt−1) for all t ∈ {1, . . . , `}.

An adaptive walk is a walk such that for all t ∈ {1, . . . , `}, φ(xt) > φ(xt−1), as
performed by a conventional hill-climbing algorithm. The number of iterations,
or steps, of the hill-climbing algorithm is the length of the adaptive walk. This
length is a good estimator of the average diameter of the local optima basins
of attraction, characterizing a problem instance multimodality. The larger the
length, the larger the basin diameter. This allows to estimate the number of local
optima when the whole search space cannot be enumerated exhaustively.

Let 〈x0, x1, . . .〉 be an infinite random walk over the search space. The au-
tocorrelation function and the correlation length of such a random walk allow
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to measure the ruggedness of a fitness landscape [15]. The random walk auto-
correlation function r : N → IR of a (scalar) fitness function φ is defined as
follows.

r(k) =
E[φ(xt) · φ(xt+k)]− E[φ(xt)] · E[φ(xt+k)]

Var(φ(xt))
(1)

where E[φ(xt)] and Var(φ(xt)) are the expected value and the variance of φ(xt),
respectively. The autocorrelation coefficients r(k) can be estimated within a
finite random walk 〈x0, x1, . . . , x`〉 of length `.

r̂(k) =

∑`−k
t=1 (φ(xt)− φ̄) · (φ(xt+k)− φ̄)

∑`
t=1(φ(xt)− φ̄)2

(2)

where φ̄ = 1
`

∑`
t=1 φ(xt), and ` � 0. The estimation error diminishes with the

walk length `. The correlation length τ measures how the autocorrelation func-
tion decreases. This characterizes the ruggedness of the landscape: the larger the
correlation length, the smoother the landscape. Following [15], we define the cor-
relation length by τ = − 1

ln(r(1)) , making the assumption that the autocorrelation

function decreases exponentially.

2.2 Multiobjective Optimization

A multiobjective optimization problem can be defined by an objective vector
function f = (f1, . . . , fM ) with M > 2 objective functions, and a set X of
feasible solutions in the decision space. In the combinatorial case, X is a discrete
set. Let Z = f(X) ⊆ IRM be the set of feasible outcome vectors in the objective
space. To each solution x ∈ X is assigned an objective vector z ∈ Z on the
basis of the vector function f : X → Z with z = f(x). The conventional Pareto
dominance relation is defined as follows. In a maximization context, an objective
vector z ∈ Z is dominated by an objective vector z′ ∈ Z, denoted by z ≺ z′, if
and only if ∀m ∈ {1, . . . ,M}, zm 6 z′m and ∃m ∈ {1, . . . ,M} such that zm < z′m.
By extension, a solution x ∈ X is dominated by a solution x′ ∈ X, denoted by
x ≺ x′, if and only if f(x) ≺ f(x′). A solution x? ∈ X is said to be Pareto
optimal (or efficient, non-dominated), if and only if there does not exist any
other solution x ∈ X such that x? ≺ x. The set of all Pareto optimal solutions
is called the Pareto set X? ⊆ X. Its mapping in the objective space is called
the Pareto front Z? ⊆ Z. One of the most challenging task in multiobjective
optimization is to identify a minimal complete Pareto set [3], i.e. a Pareto set of
minimal size, that is one Pareto optimal solution for each point from the Pareto
front.

However, in the combinatorial case, generating a complete Pareto set is often
infeasible for two main reasons [3]: (i) the number of Pareto optimal solutions is
typically exponential in the size of the problem instance, and (ii) deciding if a
feasible solution belongs to the Pareto set may be NP-complete. Therefore, the
overall goal is often to identify a good Pareto set approximation. To this end,
heuristics in general, and evolutionary algorithms in particular, have received a
growing interest since the late eighties.
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2.3 ρMNK-Landscapes

The family of ρMNK-landscapes constitutes a problem-independent model used
for constructing multiobjective multimodal landscapes with objective correla-
tion [13]. It extends single-objective NK-landscapes [7] and multiobjective NK-
landscapes with independent objective functions [1]. Feasible solutions are binary
strings of size N , i.e. the decision space is X = {0, 1}N . The parameter N refers
to the problem size (the bit-string length), and the parameter K to the number
of variables that influence a particular position from the bit-string (the epistatic
interactions). The objective vector function f = (f1, . . . , fm, . . . , fM ) is defined
as f : {0, 1}N → [0, 1)M . Each objective function fm is to be maximized and
can be formalized as follows.

fm(x) =
1

N

N∑

i=1

cmi (xi, xi1 , . . . , xiK ) , m ∈ {1, . . . ,M} (3)

where cmi : {0, 1}K+1 → [0, 1) defines the multidimensional component function
associated with each variable xi, i ∈ {1, . . . , N}, and where K < N . By increas-
ing the number of variable interactions K from 0 to (N − 1), ρMNK-landscapes
can be gradually tuned from smooth to rugged. In this work, we set the po-
sition of these epistatic interactions uniformly at random. The same epistatic
degree Km = K and the same epistatic interactions are used for all objectives
m ∈ {1, . . . ,M}. Component values are uniformly distributed in the range [0, 1),
and follow a multivariate uniform distribution of dimension M , defined by a cor-
relation coefficient ρ > −1

M−1 , i.e. the same correlation ρ is defined between all
pairs of objective functions. As a consequence, it is very unlikely that the same
objective vector is assigned to two different solutions. The positive (respectively
negative) data correlation allows to decrease (respectively increases) the degree
of conflict between the objective function values very precisely [13]. An instance
generator and the problem instances under study in this paper can be found at
the following URL: http://mocobench.sf.net/.

In the following, we investigate ρMNK-landscapes with an epistatic degree
K ∈ {2, 4, 6, 8, 10}, an objective space dimension M ∈ {2, 3, 5}, and an objective
correlation ρ ∈ {−0.9,−0.7,−0.4,−0.2, 0.0, 0.2, 0.4, 0.7, 0.9} such that ρ > −1

M−1 .
The problem size is set to N = 18 in order to enumerate the search space ex-
haustively. The search space size is then |X| = 218. 30 different landscapes,
independently generated at random, are considered for each parameter combi-
nation: ρ, M , and K. This leads to a total of 3300 problem instances.

3 Problem Features and Correlation Analysis

In this section, we identify a number of general-purpose features, either directly
extracted from the problem instance itself (low-level features), or computed from
the enumerated Pareto set and from the fitness landscape (high-level features).
Then, a correlation analysis is conducted on those features in order to highlight
the main similarities in characterizing the difficulties of a problem instance.
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3.1 Low-level Features from Problem Input Data

First, we consider the following low-level features related to the definition of
ρMNK-landscapes.

Number of epistatic interactions (K): This gives the number of variable
correlations in the construction of ρMNK-landscapes. As will be detailed
later, despite the K-value can generally not be retrieved directly from an un-
known instance, it can be precisely estimated within some high-level fitness
landscape metrics described below.

Number of objective functions (M): This parameter represents the dimen-
sion of the objective space in the construction of ρMNK-landscapes.

Objective correlation (ρ): This parameter allows to tune the correlation be-
tween the objective function values in ρMNK-landscapes. In our analysis,
the objective correlation is the same between all pairs of objectives.

3.2 High-level Features from the Pareto Set

The high-level fitness landscape metrics considered in our analysis are described
below. We start with some general features related to the Pareto set.

Number of Pareto optimal solutions (npo): The number of Pareto opti-
mal solutions enumerated in the instance under consideration simply cor-
responds to the cardinality of the (exact) Pareto set, i.e. npo = |X?|. The
approximation set manipulated by any EMO algorithm is directly related to
the cardinality of the Pareto optimal set. For ρMNK-landscapes, the number
of Pareto optimal solutions typically grows exponentially with the problem
size, the number of objectives and with the degree of conflict between the
objectives [13].

Hypervolume (hv): The hypervolume value of a the Pareto set X? gives the
portion of the objective space that is dominated by X? [16]. We take the
origin as a reference point z? = (0.0, . . . , 0.0).

Average distance between Pareto optimal solutions (avgd): This metric
corresponds to the average distance, in terms of Hamming distance, between
any pair of Pareto optimal solutions.

Maximum distance between Pareto optimal solutions (maxd): This met-
ric is the maximum distance between two Pareto optimal solutions in terms
of Hamming distance.

3.3 High-level Features from the Pareto Graph

In the following, we describe some high-level features related to the connectedness
of the Pareto set [4, 5]. If all Pareto optimal solutions are connected with respect
to a given neighborhood structure, the Pareto set is said to be connected, and
local search algorithms would be able to identify many non-dominated solutions
by starting with at least one Pareto optimal solution; see e.g. [10, 11]. We follow
the definition of k-Pareto graph from [10]. The k-Pareto graph is defined as a
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graph PGk = (V,E), where the set of vertices V contains all Pareto optimal
solutions, and there is an edge eij ∈ E between two nodes i and j if and only
if the shortest distance between solutions xi and xj ∈ X is below a bound k,
i.e. d(xi, xj) 6 k. The distance d(xi, xj) is taken as the Hamming distance for
ρMNK-landscapes. This corresponds to the bit-flip neighborhood operator. Some
connectedness-related high-level features under investigation are given below.

Number of connected components (nconnec): This metric gives the num-
ber of connected components in the 1-Pareto graph, i.e. in PGk with k = 1.

Size of the largest connected component (lconnec): This corresponds to
the size of the largest connected component in the 1-Pareto graph PG1.

Minimum distance to be connected (kconnec): This measure corresponds
to the smallest distance k such that the k-Pareto graph is connected, i.e. for
all pairs of vertices xi, xj ∈ V in PGk, there exists and edge eij ∈ E.

3.4 High-level Features from the Fitness Landscape

At last, we give some high-level metrics related to the number of local optima,
the length of adaptive walks, and the autocorrelation functions.

Number of Pareto local optima (nplo): A solution x ∈ X is a Pareto lo-
cal optimum with respect to a neighborhood structure N if there does not
exist any neighboring solution x′ ∈ N (x) such that x ≺ x′; see e.g. [12].
For ρMNK-landscapes, the neighborhood structure is taken as the 1-bit-flip,
which is directly related to a Hamming distance 1. This metric reports the
number of Pareto local optima enumerated on the ρMNK-landscape under
consideration.

Length of a Pareto-based adaptive walk (ladapt): We here compute the
length of adaptive walks by means of a very basic single solution-based
Pareto-based Hill-Climbing (PHC) algorithm. The PHC algorithm is ini-
tialized with a random solution. At each iteration, the current solution is
replaced by a random dominating neighboring solution. As a consequence,
PHC stops on a Pareto local optimum. The number of iterations, or steps,
of the PHC algorithm is the length of the Pareto-based adaptive walk. As
in the single-objective case, the number of Pareto local optima is expected
to increase exponentially when the adaptive length decreases for ρMNK-
landscapes [13].

Correlation length of solution hypervolume (corhv): The ruggedness is
here measured in terms of the autocorrelation of the hypervolume along a
random walk. As explained in Section 2.1, the correlation length τ measures
how the autocorrelation function, estimated with a random walk, decreases.
The autocorrelation coefficients are here computed with the following scalar
fitness function φ : X → IR: φ(x) = hv({x}), where hv({x}) is the hyper-
volume of solution x ∈ X, the reference point being set to the origin. The
random walk length is set to ` = 104, and the neighborhood operator is the
1-bit-flip.
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Correlation length of local hypervolume (corlhv): This metric is similar
to the previous one, except that the fitness function is here based on a local
hypervolume measure. The local hypervolume is the portion of the objective
space covered by non-dominated neighboring solutions, i.e. for all x ∈ X,
φ(x) = hv(N (x) ∪ {x}). Similarly to corhv, the random walk length is set
to ` = 104, and the neighborhood operator N is the 1-bit-flip.

3.5 Correlation Analysis

The correlation matrix between each pair of features is reported in Fig. 1.

K

2.0 4.5

−9.9e−22 0.00

0 6

−0.082 −0.22

2 8

0.60 0.56

0 800

0.32 −0.35

2 8

0.45 0.31

0 4 8

−0.34 −1.00

0.2 0.7

2
6−0.97

2
.0

4
.5

M 0.26 0.57 0.90 0.13 −0.23 0.39 0.53 −0.34 0.35 −0.39 −0.025 0.085

ρ −0.49 0.06 −0.25 0.17 −0.22 −0.35 0.24 −0.67 0.64 0.0085

−
0
.5

0.12

0
6 log_npo 0.67 0.28 −0.40 0.59 0.90 −0.57 0.81 −0.81 0.065 0.075

hv 0.04 −0.41 0.32 0.64 −0.50 0.41 −0.44 0.19

−
0
.7

0.25

2
8 avgd 0.58 0.24 0.021 0.49 0.56 −0.58 −0.60 −0.59

maxd −0.17 −0.49 0.89 −0.086 0.068 −0.55

2
8−0.55

0
8
0
0

nconnec 0.44 −0.28 0.48 −0.48 −0.33 −0.29

log_lconnec −0.64 0.61 −0.59 0.34

0
60.33

2
8 kconnec −0.27 0.25 −0.44 −0.44

log_nplo −1.00 −0.33

4
8−0.34

0
4

8

ladapt 0.36 0.36

corhv

0
.4

0
.8

0.97

2 6

0
.2

0
.7

−0.5 −0.7 2 8 0 6 4 8 0.4 0.8

corlhv

Fig. 1. Correlation matrix between all pairs of features. The feature names are re-
ported on the diagonal. For each pair of features, scatter plots and smoothing splines
are displayed below the diagonal, and the corresponding correlation coefficients are
reported above the diagonal.
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Fig. 2. Scatter plot of
the linear regression model
log(npo) = β1M+β2ρ+e, with
β1 = 1.30567, β2 = −2.87688,
and e = 0.27735. Residual
standard error: 1.037 on 3297
degrees of freedom, multiple
R-squared: 0.7629, adjusted
R-squared: 0.7627, F-statistic:
5303 on 2 and 3297 DF,
p-value: < 2.2e− 16.

First of all, when taken independently, the num-
ber of objective functions M and the objective
correlation ρ are both moderately correlated to
the cardinality of the Pareto set npo (the abso-
lute correlation coefficient is around 0.5 in both
cases). Surprisingly, the objective space dimension
does not explain by itself the large amount of non-
dominated solutions found in many-objective op-
timization [14]. As pointed out in [13], this should
be put in relation with the degree of conflicts be-
tween the objective function values. Indeed, as
shown in Fig. 2, it is easy to build a simple multi-
linear regression model based on M and ρ to pre-
dict the value of npo with a very high precision
(resulting in a correlation coefficient of 0.87, and
explaining 76% of the variance). This highlights
that the impact of many-objective fitness land-
scapes on the search process cannot be analyzed
properly without taking the objective correlation
into account.

Interestingly, other important remarks can be extracted from the figure. With
respect to the Pareto set, the hypervolume value increases with the objective
space dimension. Moreover, and unsurprisingly, the Pareto set size and the size
of the largest connected component from the Pareto graph are highly correlated.
So are the maximum distance between Pareto optimal solutions and the mini-
mum distance for the Pareto set to be connected. As also reported in [13], there
is a high correlation between the number of Pareto optimal solutions npo and
of Pareto local optima nplo. More importantly, the number of Pareto local op-
tima nplo can be precisely estimated with the length of a Pareto-based adaptive
walk ladapt (the absolute correlation coefficient between log(nplo) and ladapt

is 1). As a consequence, this allows to estimate the size of the Pareto set as
well. At last, the number of epistatic interactions (decision variable correlations)
K can be estimated with hypervolume-based autocorrelation functions along a
random walk corhv and corlhv. Since there is not much difference between the
correlations coefficients of both functions, the first one corhv should preferably
be considered due to its simplicity.

4 Problem Features vs. Algorithm Performance

4.1 Experimental Setup

Global SEMO. Global SEMO (G-SEMO for short) [8] is a simple elitist steady-
state EMO algorithm for black-box 0–1 optimization problems dealing with
an arbitrary objective vector function defined as f : {0, 1}N → Z such that
Z ⊆ IRM , like ρMNK-landscapes. A pseudo-code is given in Algorithm 1. It
maintains an unbounded archive A of non-dominated solutions found so far.
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Algorithm 1 Pseudo-code of G-SEMO

Input: x0 ∈ X
Output: Archive A

1: A←
{
x0

}

2: loop
3: select x from A at random
4: create x′ by flipping each bit of x with a probability 1/N
5: A← non-dominated solutions from A ∪ {x′}
6: end loop

The archive is initialized with one random solution from the search space. At
each iteration, one solution is chosen at random from the archive. Each bit of
this solution is independently flipped with a rate r = 1/N , and the obtained
solution is checked for insertion in the archive. Within such an independent bit-
flip mutation, any solution from the search space can potentially be reached by
applying the mutation operator to any arbitrary solution. In its general form, the
G-SEMO algorithm does not have any explicit stopping rule [8]. In this paper,
we are interested in its running time, in terms of a number of function evalua-
tions, until an (1 + ε)-approximation of the Pareto set has been identified and
is contained in the internal memory A of the algorithm, subject to a maximum
number of function evaluations.

Performance Evaluation. For any constant value ε > 0, the (multiplicative)
ε-dominance relation �ε can be defined as follows. For all z, z′ ∈ Z, z �ε z

′ if
and only if zm · (1 + ε) 6 z′m, ∀m ∈ {1, . . . ,M}. Similarly, for all x, x′ ∈ X,
x �ε x

′ if and only if f(x) �ε f(x′). Let ε > 0. A set Xε ⊆ X is an (1 + ε)-
approximation of the Pareto set if and only if, for any solution x ∈ X, there is
one solution x′ ∈ Xε such that x �ε x

′. This is equivalent of finding a Pareto set
approximation whose multiplicative epsilon quality indicator value with respect
to the exact Pareto set is (1 + ε), see e.g. [16]. Interestingly, under some general
assumptions, there always exists an (1 + ε)-approximation, for any given ε > 0,
whose cardinality is both polynomial in the problem size and in 1/ε [9].

Following a conventional methodology from single-objective continuous black-
box optimization benchmarking [6], the expected number of function evaluations
to identify an (1 + ε)-approximation is chosen as a performance measure. How-
ever, as any EMO algorithm, G-SEMO can either succeed or fail to reach an
accuracy of ε in a single simulation run. In case of a success, the runtime is
the number of function evaluations until an (1 + ε)-approximation was found.
In case of a failure, we simply restart the algorithm at random. We then obtain
a “simulated runtime” [6] from a set of given trials of G-SEMO on a given in-
stance. Such a performance measure allows to take into account both the success
rate ps ∈ (0, 1] and the convergence speed of the G-SEMO algorithm. Indeed,
after (n− 1) failures, each one requiring Tf evaluations, and the final successful

run with Ts evaluations, the total runtime is T =
∑n−1

i=1 Tf + Ts. By taking the
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expectation value and by considering that the probability of success after (n−1)
failures follows a Bernoulli distribution of parameter ps, we have:

E[T ] =

(
1− ps
ps

)
E[Tf ] + E[Ts] (4)

In our case, the success rate ps is estimated with the ratio of successful runs over
the total number of executions (p̂s), the expected runtime for unsuccessful runs
E[Tf ] is set to a constant function evaluation limit Tmax, and the expected run-
time for successful runs E[Ts] is estimated with the average number of function
evaluations performed by successful runs.

ert =

(
1− p̂s
p̂s

)
Tmax +

1

Ns

Ns∑

i=1

Ti (5)

where Ns is the number of successful runs, and Ti is the number of evaluations
required for successful run i. For more details, we refer to [6].

Parameter Setting. In our analysis, we set ε = 0.1. The time limit is set
to Tmax = 2N/10 < 26215 function evaluations without identifying an (1 + ε)-
approximation. The G-SEMO algorithm is executed 100 times per instance. For
a given instance, the success rate and the expected number of evaluations for
successful runs are estimated from those 100 executions. However, let us note
that G-SEMO was not able to identify a (1 + ε)-approximation set for any of
the runs on one instance with M = 3, ρ = 0.2 and K = 10, one instance with
M = 3, ρ = 0.4 and K = 10, ten instances with M = 5, ρ = 0.2 and K = 10,
six instances with M = 5, ρ = 0.4 and K = 10, as well as two instances with
M = 5, ρ = 0.7 and K = 10. Moreover, G-SEMO was not able to solve the
following instances due to an overload CPU resources available: M = 5 and
ρ ∈ {−0.2, 0.0}. Overall, this represents a total amount of 2980 instances times
100 executions, that is 298000 simulation runs.

4.2 Computational Results

The correlation between each feature and the running time of G-SEMO is re-
ported in Fig. 3. First, with respect to low-level features, there exists a high
correlation between log(ert) and K, which is the highest absolute correlation
observed on our data. However, surprisingly, the correlation of the performance
measure with M and ρ is not significant. Second, with respect to high-level fea-
tures from the Pareto set, the size of the Pareto set and its hypervolume does not
explain the variance of log(ert). Nevertheless, the larger the distance between
Pareto optimal solutions in the decision space, the larger the running time of
G-SEMO. Similarly, when the Pareto graph is close to a fully connected graph,
G-SEMO is likely to take less time to identify a (1 + ε)-approximation (the ab-
solute correlation value is around 0.3). As a consequence, the number of Pareto
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Fig. 3. Correlation between log(ert) and each feature. The feature names are reported
on the first line, correlation coefficients are reported on the second line, and scatter
plots as well as smoothing splines are displayed on the third line.

optimal solutions has a smaller impact on the performance of G-SEMO than the
structure existing between those solutions in the decision space.

With respect to high-level fitness landscape features, the number of Pareto
local optima nplo and its estimator ladapt both present a significant correlation
with the estimated running time of G-SEMO. Indeed, the more Pareto local
optima, the longer the running time (the absolute correlation value is close to
0.5). At last, the hypervolume-based autocorrelation functions highly explain
the variance of the G-SEMO performance. For both corhv and corlhv, the
absolute correlation value is around 0.8. Overall, this correlation analysis gives
a “big picture” of a well-suited multiobjective fitness landscape for G-SEMO.
This corroborates the impact of the problem instance properties identified in the
previous section on the performance of multiobjective evolutionary algorithms.

5 Discussion

In this paper, we attempted to give a first step towards a better understanding of
the evolutionary multiobjective optimization algorithm performance according
to the main characteristics of the problem instance. We first presented a number
of general problem features, together with a correlation analysis between those
features on a large set of enumerable multiobjective NK-landscapes. Then, we
put in relation the running time of a simple evolutionary multiobjective optimiza-
tion algorithm with those features. Our analysis clearly shows the high impact
of theses problem-related properties on the performance of the algorithm. In
particular, two relevant hypervolume-based autocorrelation functions have been
proposed for the first time, allowing to precisely estimate the ruggedness of the
instance under consideration, as well as the algorithm running time.

Using the general methodology introduced in the paper applied to larger
problem instances would allow to appreciate the impact of the multiobjective
features on the performance of evolutionary multiobjective optimizations when
tackling large-size instances. This should be possible with features that do not re-
quire the complete enumeration of the decision space, including the problem size,
the number of objectives, the objective correlation, the length of a Pareto-based
adaptive walk, and the hypervolume-based autocorrelation functions proposed
in this paper. As well, the impact of the stopping condition, and in particu-
lar the approximation quality (the ε-value) should be carefully investigated. At
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last, a similar study would allow to better understand the structure of the land-
scape for real-world multiobjective combinatorial optimization problems. This
work pushes towards the design of a meta-algorithm able to select the most ef-
ficient evolutionary multiobjective algorithm or parameter setting according to
a prediction model based on the main problem instance features.
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Log-log Convergence for Noisy Optimization
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Abstract. We consider noisy optimization problems, without the as-
sumption of variance vanishing in the neighborhood of the optimum. We
show mathematically that simple rules with exponential number of re-
samplings lead to a log-log convergence rate. In particular, in this case
the log of the distance to the optimum is linear on the log of the num-
ber of resamplings. As well as with number of resamplings polynomial
in the inverse step-size. We show empirically that this convergence rate
is obtained also with polynomial number of resamplings. In this polyno-
mial resampling setting, using classical evolution strategies and an ad hoc
choice of the number of resamplings, we seemingly get the same rate as
those obtained with specific Estimation of Distribution Algorithms de-
signed for noisy setting. We also experiment non-adaptive polynomial re-
samplings. Compared to the state of the art, our results provide (i) proofs
of log-log convergence for evolution strategies (which were not covered by
existing results) in the case of objective functions with quadratic expec-
tations and constant noise, (ii) log-log rates also for objective functions
with expectation E[f(x)] = ||x−x∗||p, where x∗ represents the optimum
(iii) experiments with different parametrizations than those considered
in the proof. These results propose some simple revaluation schemes.
This paper extends [1].

1 Introduction

In this introduction, we first present noisy optimization and the local case. We
then classify existing optimization algorithms for such settings. Afterwards we
discuss log-linear and log-log scales for convergences and give an overview of
the paper. In all the paper, log represents the natural logarithm and N is a
standard Gaussian random variable (possibly multidimensional, depending on
the context), except when it is specified explicitly that N may be any random
variable with bounded density.

Noisy optimization. In this paper, noisy optimization denotes the opti-
mization of an objective function which has internal stochastic effects. When
the algorithm requests fitness(x), it gets in fact fitness(x, θ) for a realization
of a random variable θ. All calls to fitness(x) are based on independent realiza-
tions of a same random variable θ. The goal of a noisy optimization algorithm
is to find x such that E(fitness(x, θ)) is minimized (or nearly minimized).

Local noisy optimization. Local noisy optimization is the optimization of
an objective function in which the main problem is noise, and not local minima.
For this reason, diversity mechanisms as in [2] or [3], in spite of their qualities,
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are not relevant here. We also restrict our work to noisy settings in which noise
does not decrease to 0 around the optimum. This constrain makes our work
different from [4]. Ref. [5, 6] consider noise models related to ours but the results
presented here are not covered by their analysis. Ref. [7–9] consider different
noise models (with Bernoulli fitness values) and a noise with variance which does
not decrease to 0. They provide general lower bounds, or convergence rates for
specific algorithms, whereas we consider convergence rates for classical evolution
strategies equipped with resamplings.

Classification of local noisy optimization algorithms. We classify noisy
local convergence algorithms in the following 3 families: (i) Algorithms based on
sampling close to the optimum and maintaining a search direction and an ap-
proximation of the optimum. In this category, we include evolution strategies[10,
6, 5] and EDA[11] as well as pattern search methods designed for noisy cases[12–
14]. Typically, these algorithms are based on noise-free algorithms, and evaluate
individuals multiple times in order to cancel (reduce) the effect of noise. The
number of resamplings is then a main issue; it can be chosen by estimating the
noise level[15], or using the step-size, or, as in the present work, in a non-adaptive
manner. (ii) Algorithms which learn (model) the objective function, sample at lo-
cations such that the model becomes more precise, and then assume that the
optimum is nearly the optimum of the learnt model. Surrogate models and Gaus-
sian processes[16, 17] belong to this family. For Gaussian processes, however, they
are usually supposed to achieve global convergence rather than local convergence.
(iii) Algorithms which combine both ideas, assuming that learning the objective
function is a good idea for handling noise issues but considering that points too
far from the optimum can not be that useful for an optimization. This at least
in a realistic scenario in which the objective function can not be that easy to
learn on the whole search domain. CLOP[7, 8] is such an approach.

Log-linear scale and log-log scale: uniform and non-uniform rates.
In the noise-free case, evolution strategies typically converge linearly in log-linear
scale (i.e. the logarithm of the distance to the optimum typically scales linearly
with the number of evaluations; see Section 2.1 for more details on this). In the
noisy case, noisy fitness values lead to a log-log convergence[9]. We investigate
conditions under which such a log-log convergence is possible. In particular, we
focus on uniform rates, i.e. rates in which all points are under a linear curve in
the log-log scale. In other words, the rate is the infimum of C such that with
probability 1− δ, for m sufficiently large, all iterates after m fitness evaluations
verify log ||xm|| ≤ −C logm, where xm is the mth evaluated individual. This is,
all points are supposed to be “good” (i.e. satisfy the inequality); not only the
best point of a given iteration. In contrast, a non-uniform rate would be the
infimum of C such that log ||xkm || ≤ −C log km for some increasing sequence
km.

For an objective function with expectation E[f(x)] = ||x − x∗||2, when the
variance is not supposed to decrease in the neighborhood of the optimum, it is
known that the best possible slope in this log-log graph is − 1

2 (see [18]), but
without uniform rate. When optimizing fitness(x) = ||x||p + N , this slope is

72



provably limited to − 1
p under locality assumption (i.e. when sampling far from

the optimum does not help, see [9] for a formalization of this assumption), and
it is known that some ad hoc EDA can reach − 1

2p (see [19]). For evolution

strategies, the slope is not known. Also, the optimal rate for E[f(x)] = ||x −
x∗||p for p 6= 2 is unknown; we show that our evolution strategies with simple
revaluation schemes have linear convergence in log-log representation in such a
case.

Algorithms considered in this paper. We here focus on simple revalua-
tion rules, in evolution strategies, based on choosing the number of resamplings.
We start with rules which decide the number of revaluations only depending on
n. This is, independently of the step-size σn, the parents xn and fitness values.
To the best of our knowledge, these simple rules have not been analyzed so far.
Nonetheless, they have strong advantages: on one hand, rules based on numbers
of resamplings defined as a function of σn have a strong sensitivity to parame-
ters, whereas we get a linear slope in log-log curve with simple rules rn = Kdnζe.
Also evolution strategies, contrarily to algorithms with good non-uniform rates,
have a nice empirical behavior from the point of view of uniform rates, as shown
mathematically by [19].

Overview of the paper. We get mathematical proofs only with an expo-
nential number of resamplings. Essentially, the algorithms for which we get a
proof have the same dynamics as in the noise-free case, they just use enough re-
samplings for cancelling the noise. This is consistent with the existing literature,
in particular [19] which shows a log-log convergence for an Estimation of Dis-
tribution Algorithm with exponentially decreasing step-size and exponentially
increasing number of resamplings. In our experiments, we see that another so-
lution is a polynomially increasing number of resamplings (independently of σn;
the number of resamplings just smoothly increases with the number of iterations,
in a non-adaptive manner), leading to a slower convergence when considering the
progress rate per iteration, but the same log-log convergence when considering
the progress rate per evaluation.

After analyzing such non-adaptive rules in the scale invariant case (Section
2.2), we study adaptive rules (Section 2.3), in which the number of evaluations
depend on the step size only; we also get rid of the scale invariant assumption.
We then investigate experimentally (Section 3) the polynomial case. We could
get positive experimental results even with the non-proved polynomial number
of revaluations (non-adaptive); maybe those results are the most satisfactory
(stable) results. We could also get convergence with adaptive rules (number of
resamplings depending on the step-size), however results are seemingly less stable
than with non-adaptive methods.

2 Theoretical analysis: exponential non-adaptive rules
can lead to log/log convergence.

Section 2.1 is devoted to some preliminaries. Section 2.2 presents results in the
scale invariant case, for an exponential number of resamplings and non-adaptive
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rules. Section 2.3 will focus on adaptive rules, with numbers of resamplings
depending on the step-size.

2.1 Preliminary: noise-free case

In the noise-free case, for some evolution strategies, we know the following re-
sults, almost surely (see e.g. Theorem 4 in [20]): log(σn)/n converges to some
constant −A < 0 and log(||xn||)/n converges to some constant −A′ < 0.
This implies that for any ρ < A, log(σn) ≤ −ρn for n sufficiently large. So,
supn≥1 log(σn) + ρn is finite. With these almost sure results, now consider V

the quantile 1 − δ/4 of exp
(
supn≥1 log(σn) + ρn

)
. Then, with probability at

least 1− δ/4, ∀n ≥ 1, σn ≤ V exp(−ρn). We can apply the same trick for lower
bounding σn, and upper and lower bounding ||xn||, all of them with probability
1 − δ/4, so that all bounds hold true simultaneously with probability at least
1− δ.

Hence, for any α < A′, α′ > A′, ρ < A, ρ′ > A, there exist C > 0, C ′ > 0,
V > 0, V ′ > 0, such that with probability at least 1− δ

∀n ≥ 1, C ′ exp(−α′n) ≤ ||xn|| ≤ C exp(−αn); (1)

∀n ≥ 1, V ′ exp(−ρ′n) ≤ σn ≤ V exp(−ρn). (2)

We will first show,in Section 2.2, our noisy optimization result (Theorem 1):

(i) in the scale invariant case
(ii) using Eq. 1 (supposed to hold in the noise-free case)

We will then show similar results in Section 2.3:

(i) without scale-invariance
(ii) using Eq. 2 (supposed to hold in the noise-free case)

(iii) with other resamplings schemes

2.2 Scale invariant case, with exponential number of resamplings

We consider Alg. 1, a version of multi-membered Evolution Strategies, the (µ,λ)-
ES. µ denotes the number of parents and λ the number of offspring (µ ≤ λ). In
every generation, the selection takes place among the λ offspring, produced from
a population of µ parents. Selection is based on the ranking of the individuals
fitness(xn) taking the µ best individuals. Here xn denotes the parent at iteration
n. We now state our first theorem, under log-linear convergence assumption (the
assumption in Eq. 5 is just Eq. 1).

Theorem 1. Consider the fitness function

f(z) = ||z||p +N (4)

over Rd and x1 = (1, 1, . . . , 1).
Consider an evolution strategy with population size λ, parent population size µ,
such that without resampling, for any δ > 0, for some α > 0, α′ > 0, with
probability 1− δ/2, with objective function fitness(x) = ||x||,

∃C,C ′; C ′ exp(−α′n) ≤ ||xn|| ≤ C exp(−αn). (5)
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Algorithm 1 An evolution strategy, with exponential number of resamplings.
If we consider K = 1 and ζ = 1 we obtain the case without resampling. N is
an arbitrary random variable with bounded density (each use is independent of
others).

Parameters: K > 0,ζ ≥ 0, λ ≥ µ > 0, a dimension d > 0.
Input: an initial x1 ∈ Rd and an initial σ0 > 0.
n← 1
while (true) do

Generate λ individuals i1, . . . , iλ independently using
ij = xn + σn,jN . (3)

Evaluate each of them rn = dKζne times and average their fitness values.
Select the µ best individuals j1, . . . , jµ.
Update: from x, σn, i1, . . . , iλ and j1, . . . , jµ, compute xn+1 and σn+1.
n← n+ 1

end while

Assume, additionally, that there is scale invariance:

σn = C ′′||xn|| (6)

for some C ′′ > 0.
Then, for any δ > 0, there is K0 > 0, ζ0 > 0 such that for K ≥ K0, ζ > ζ0, Eq.
1 also holds with probability at least 1 − δ for fitness function as in Eq. 4 and
resampling rule as in Alg. 1.

Remarks: (i) Informally speaking, our theorem shows that if a scale invari-
ant algorithm converges in the noise-free case, then it also converges in the noisy
case with the exponential resampling rule, at least if parameters are large enough
(a similar effect of constants was pointed out in [4] in a different setting).
(ii) We assume that the optimum is in 0 and the initial x1 at 1. Note that these
assumptions have no influence when we use algorithms invariant by rotation and
translation.
(iii) We show a log-linear convergence rate as in the noise-free case, but at
the cost of more evaluations per iteration. When normalized by the number of
function evaluations, we get log ||xn|| linear in the logarithm of the number of
function evaluations, as detailed in Corollary 1.

Proof of the theorem: In all the proof, N denotes a standard Gaussian
random variable (depending on the context, in dimension 1 or d). Consider an
arbitrary δ > 0. Consider some n ≥ 1. Consider δn = exp(−γn) for some γ > 0.

Define pn the probability that two generated points, e.g. i1 and i2, are such
that | ||i1||p − ||i2||p | ≤ δn.

Step 1: Using Eq. 3 and Eq. 6, we show that

pn ≤ B′ exp(−γ′n) (7)

for some B′ > 0, γ′ > 0 depending on γ, d, p, C ′, C ′′, α′.
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Proof of step 1: with N1 and N2 two d-dimensional independent standard
Gaussian random variables,

pn ≤ P (| ||1 + C ′′N1||p − ||1 + C ′′N2||p | ≤ δn/||xn||p). (8)

Define densityMax the supremum of the density of | ||1+C ′′N1||p−||1+C ′′N2||p |
we get pn ≤ densityMaxC ′

−p
exp((pα′ − γ)n),

hence the expected result with γ′ = γ−pα′ and B′ = densityMax(C ′)−p. Notice
that densityMax is upper bounded.

In particular, γ′ is arbitrarily large, provided that γ is sufficiently large.
Step 2: Consider now p′n the probability that there exists i1 and i2 such that

| ||i1||p − ||i2||p | ≤ δn. Then, p′n ≤ λ2pn ≤ B′λ2 exp(−γ′n).
Step 3: Consider now p′′n the probability that |N/√Kζn| ≥ δn/2. First,

we write p′′n = P (N ≥ δn
2

√
Kζn). So by Chebychev inequality, p′′n ≤

B′′ exp(−γ′′n) for γ′′ = log(ζ) − 2γ arbitrarily large, provided that ζ is large
enough, and B′′ = 4/K.

Step 4: Consider now p′′′n the probability that |N/√Kζn| ≥ δn/2 at least
once for the λ evaluated individuals of iteration n. Then, p′′′n ≤ λp′′n.

Step 5: In this step we consider the probability that two individuals are
misranked due to noise. Let us now consider p′′′′n the probability that at least
two points ia and ib at iteration n verify

||ia||p ≤ ||ib||p (9)

and noisyEvaluation(ia) ≥ noisyEvaluation(ib) (10)

where noisyEvaluation(i) is the average of the multiple evaluations of individual
i. Eqs. 9 and 10 occur simultaneously if either two points have very similar
fitness (difference less than δn) or the noise is big (larger than δn/2). Therefore,
p′′′′n ≤ p′n + p′′′n ≤ λ2pn + λp′′n so p′′′′n ≤ (B′ +B′′)λ2 exp(−min(γ′, γ′′)n).

Step 6: Step 5 was about the probability that at least two points at iteration
n are misranked due to noise. We now consider

∑
n≥1 p

′′′′
n , which is an upper

bound on the probability that in at least one iteration there is a misranking of
two individuals.

If γ′ and γ′′ are large enough,
∑
n≥1 p

′′′′
n < δ.

This implies that with probability at least 1 − δ, provided that K and ζ
have been chosen large enough for γ and γ′ to be large enough, we get the same
rankings of points as in the noise free case - this proves the expected result.

The following corollary shows that this is a log-log convergence.
Corollary 1: log-log convergence with exponential resampling. With

en the number of evaluations at the end of iteration n, we have en = Kζ ζ
n−1
ζ−1 .

We then get, from Eq. 1,
log(||xn||)/ log(en)→ − α

log ζ
(11)

with probability at least 1− δ. Eq. 11 is the convergence in log/log scale.
We have shown this property for an exponentially increasing number of re-

samplings, which is indeed similar to R-EDA[19], which converges with a small
number of iterations but with exponentially many resamplings per iteration. In
the experimental section 3, we will check what happens in the polynomial case.
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2.3 Extension: adaptive resamplings and removing the scale
invariance assumption

We have assumed above a scale invariance. This is obviously not a nice feature
of our proof, because scale invariance does not correspond to anything real; in
a real setting we do not know the distance to the optimum. We show below an
extension of the result above using the assumption of a log-linear convergence
of σn as in Eq. 2.
In the corollary below, we also get rid of the non-adaptive rule with exponential
number of resamplings, replaced by a number of resamplings depending on the
step-size σn only, as in Eq. 2. In one corollary, we switch to both (i) adaptive
resampling rule and (ii) no scale invariance; each change can indeed be proved
independently of the other.

Algorithm 2 An evolution strategy, with number of resamplings polynomial
in the step-size. The case without resampling means Y = 1 and η = 0. N is
an arbitrary random variable with bounded density (each use is independent of
others).

Parameters: Y > 0,η ≥ 0, λ ≥ µ > 0, a dimension d > 0.
Input: an initial x1 ∈ Rd and an initial σ0 > 0.
n← 1
while (true) do

Generate λ individuals i1, . . . , iλ independently using
ij = xn + σn,jN . (12)

Evaluate each of them rn = dY σn−ηe times and average their fitness values.
Select the µ best individuals j1, . . . , jµ.
Update: from x, σn, i1, . . . , iλ and j1, . . . , jµ, compute xn+1 and σn+1.
n← n+ 1

end while

Corollary 2: adaptive resampling and no scale-invariance. The proof also
holds without scale invariance, under the following assumptions:
– For any δ > 0, there are constants ρ > 0, V > 0, ρ′ > 0, V ′ > 0 such that

with probability at least 1− δ, Eq. 2 holds.
– The number of revaluations is

Y

(
1

σn

)η
(13)

with Y and η sufficiently large.
– Individuals are still randomly drawn using xn +σnN for some random vari-

able N with bounded density.

Remark: The last remark is here for cases like self-adaptive algorithms,
in which we do not use directly a Gaussian random variable, but a Gaussian
random variable multiplied e.g. by exp( 1√

d
)Gaussian, with Gaussian a standard

Gaussian random variable. For example, SA-ES algorithms as in [20] are included
in this proof because they converge log-linearly as explained in Section 2.1.

Proof of corollary 2: Two steps of the proof are different, namely step 1
and step 2. We here adapt the proofs of these two steps.
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Adapting step 1: Eq. 8 becomes Eq. 14:
pn ≤ P (| ||1 + C ′′nN1||P − ||1 + C ′′nN2||p | ≤ δn/||xn||p). (14)

where C ′′n = σn/||xn|| ≥ t′ exp(−tn) for some t > 0, t′ > 0 depending on
ρ, ρ′, V, V ′ only. Eq. 14 leads to

pn ≤ (C ′′n)−ddensityMaxC ′
−p

exp((pα′ − γ)n),

hence the expected result with γ′ = γ− pα′−dt. densityMax is upper bounded
due to the third condition of corollary 2.

Adapting step 2: It is sufficient to show that the number of resamplings is
larger (for each iteration) than in the Theorem 1, so that step 2 still holds.

Eq. 13 implies that the number of revaluations at step n is at least
Y
(

1
V

)η
exp(ρηn). This is more than Kζn, at least if Y and η are large enough.

This leads to the same conclusion as in the Theorem 1, except that we have
probability 1 − 2δ instead of 1 − δ (which is not a big issue as we can do the
same with δ/2).

The following corollary is here for showing that our result leads to the log-log
convergence.

Corollary 3: log-log convergence for adaptive resampling. With
en the number of evaluations at the end of iteration n, we have en =

Y
(

1
V

)η
exp(ρη) exp(ρηn)−1

exp(ρη)−1 . We then get, from Eq. 1,

log(||xn||)/ log(en)→ − α

ρη
(15)

with probability at least 1− δ. Eq. 15 is the convergence in log/log scale.

3 Polynomial number of resamplings: experiments

We here consider a polynomial number of resamplings, as in Alg. 3.

Algorithm 3 An evolution strategy, with polynomial number of resamplings.
The case without resampling means K = 1 and ζ = 0.

Parameters: K > 0,ζ ≥ 0, λ ≥ µ > 0, a dimension d > 0.
Input: an initial x1 ∈ Rd and an initial σ0 > 0.
n← 1
while (true) do

Generate λ individuals i1, . . . , iλ independently using

σn,j = σn × exp(
1√
d
N )

ij = xn + σn,jN . (16)

Evaluate each of them rn = dKnζe times and average their fitness values.
Select the µ best individuals j1, . . . , jµ.
Update: from x, σn, i1, . . . , iλ and j1, . . . , jµ, compute xn+1 and σn+1.
n← n+ 1

end while
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Experiments are performed in a “real” setting, without scale invariance. Im-
portantly, our mathematical results hold only log-log convergence under the
assumption that constants are large enough. We present results with fitness
function fitness(x) = ||x||p +N with p = 2 in Fig. 1.

We get slopes close to − 1
2p , with ζ = 1 or ζ = 2. Non-presented experiments

show that ζ = 0 performs very poorly; other experiments with p = 1 or p = 4
and dimension 2, 3, 4, 5, with ζ = 1, 2, 3 and with µ = min(d, dλ/4e), λ = dd

√
de

as recommended in [10, 21]; slopes are usually better than −1/(2p) for ζ = 2 or
ζ = 3 and worse for ζ = 1; seemingly results for ζ large are farther from the
asymptotic regime. We conjecture that the asymptotic regime is −1/(2p) but
that it is reached later when ζ is large. R-EDA[19] reaches − 1

2p ; we seemingly
get slightly better but this might be due to a non-asymptotic effect. Fig. 1
provides results with high numbers of evaluations.
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(a) d = 2, ζ = 2.Slope = −0.3267.
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(b) d = 4, ζ = 2.Slope = −0.2829.
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(c) d = 2, ζ = 1.Slope = −0.2126.
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(d) d = 4, ζ = 1.Slope = −0.1404.

Fig. 1: Experiments in dimension 2, 3, 4 with ζ = 1, 2 (number of evaluations
shown by x-axis) for rn = Kdnζe (i.e. polynomial, non-adaptive) with µ = 2,
λ = 4, p = 2 and K = 2. The slope is evaluated on the second half of the
iterations. We get slopes close to −1/(2p). All results are averaged over 20 runs.
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4 Experiments with adaptivity: Y σ−η
n revaluations

We here experiment Alg. 2. The algorithm should converge linearly in log-log
scale as shown by Corollary 3, at least for large enough values of Y and η.
Notice we consider values of µ, λ for which log-linear convergence is proved in
the noise-free setting (see Section 2.1). In all this section, µ = min(d, dλ/4e),
λ = dd

√
de.

Slopes as estimated on the case η = 2 (usually the most favorable, and
an important case naturally arising in sufficiently differentiable problems) are
given in Table 1 (left) for dimension d = 100. In this case we are far from the
asymptotic regime. We get results close to − 1

2 in all cases. − 1
2 is reachable by

Table 1: Left: Dimension 100. Estimated slope for the adaptive rule with

rn = d
(

1
σn

)2
e resamplings at iteration n. Slopes are estimated on the second

half of the curve. Right: Dimension 10. Estimated slope for the adaptive rule

with rn = dY
(

1
σn

)2
e resamplings at iteration n (Y = 1 as in previous curves,

and Y = 20 for checking the impact of convergence; the negative slope (apparent
convergence) for Y = 20 is stable, as well as the divergence or stagnation for
Y = 1 for p = 4). Slopes are estimated on the second half of the curve.

d = 100

p slope for Y = 1

1 -0.52
2 -0.51
4 -0.45

d = 10

p slope for Y = 1 slope for Y = 20

1 -0.51 -0.50
2 -0.18 -0.17
4 >0 -0.08

algorithms which learn a model of the fitness function, as e.g. [7]. A point is that
we have high dimension in this case and maybe the − 1

2p is for asymptotic results,
and in high dimension we are far from asymptotic results. This is suggested by
experiments in dimension 10, summarized in Table 1 (right). We also point out
that the known complexity bounds is − 1

p (from [9]), so maybe the slope can

reach − 1
p in some cases. Results with Y

(
1
σ

)η
are moderately stable (impact of

Y , in particular), hence our preference for stable rules such as non-adaptively
choosing n2 revaluations per individual at iteration n. Slopes as estimated on
the case η = 2 are given in Table 1 (right) for dimension d = 10; we also tested

20( 1
σn

)2 (i.e. Y = 20). Results with
(

1
σn

)η
are moderately stable, hence our

preference for stable rules such as non-adaptively choosing n2 revaluations per
individual at iteration n.

5 Conclusion

We have shown mathematically log-log convergence results and studied experi-
mentally the slope in this convergence. These results were shown for evolution
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strategies, which are known for having good uniform rates, rather than good
simple regret. We summarize these two parts below and give some research di-
rections.
Log-log convergence. We have shown that the log-log convergence (i.e. linear
convergence with x-axis the log of the number of evaluations and y-axis the log
of the distance to the optimum) occurs in various cases:

– non-adaptive rules, with number of resamplings exponential in the iteration
counter (here we have a mathematical proof); as shown by Corollary 2, this
can be extended to non scale-invariant algorithms;

– adaptive rules, with number of resamplings polynomial in 1/σn with σn the
step-size (here we have a mathematical proof; however, there is a strong sen-
sitivity to constants Y and η which participate in the number of resamplings

per individual, Y
(

1
σn

)η
);

– non-adaptive rule, with polynomial number of resamplings; this case is a
quite convenient scheme experimentally but we have no proof in this case.

Slope in log-log convergence. Experimentally, the best slope in the log-log
representation is often close to − 1

2p for fitness function ||x||p +N . It is known

that under modeling assumptions (i.e. the function is regular enough for being
optimized by learning), it is possible to do better than that (the slope becomes
−1/2 for parametric cases, see [7] and references therein), but − 1

2p is the
best known exponent under locality assumption. Basically, locality assumption
ensures that most points are reasonably good, whereas some specialized noisy
optimization algorithms sample a few very good points and essentially sample
individuals far from the optimum (see e.g. [7]).

Further work. The main further work is the mathematical analysis of the
polynomial number of resamplings in the non-adaptive case. Also, a combination
of adaptive and non-adaptive rules might be interesting; adaptive rules are in-
tuitively satisfactory, but non-adaptive polynomial rules provide simple efficient
solutions, with empirically easy (no tuning) results. If our life depended on a
scheme, we would for the moment choose a simple polynomial rule with a num-
ber of revaluations quadratic in the number of evaluations, in spite of (maybe)
moderate elegance due to lack of adaptivity.
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Abstract. Evolutionary Algorithms (EA) usually carry out an efficient explo-
ration of the search-space, but get often trapped in local minima and do not prove
the optimality of the solution. Interval-based techniques, on the other hand, yield
a numerical proof of optimality of the solution. However, they may fail to con-
verge within a reasonable time due to their inability to quickly compute a good
approximation of the global minimum and their exponential complexity. The con-
tribution of this paper is a hybrid algorithm called Charibde in which a partic-
ular EA, Differential Evolution, cooperates with a Branch and Bound algorithm
endowed with interval propagation techniques. It prevents premature convergence
toward local optima and outperforms both deterministic and stochastic existing
approaches. We demonstrate its efficiency on a benchmark of highly multimodal
problems, for which we provide previously unknown global minima and certifi-
cation of optimality.

1 Motivation

Evolutionary Algorithms (EA) have been widely used by the global optimization com-
munity for their ability to handle complex problems with no assumption on continuity
or differentiability. They generally converge toward satisfactory solutions, but may get
trapped in local optima and provide suboptimal solutions. Moreover, their convergence
remains hard to control due to their stochastic nature. On the other hand, exhaustive
Branch and Bound methods based on Interval Analysis [1] guarantee rigorous bounds
on the solutions to numerical optimization problems but are limited by their exponential
complexity.

Few approaches attempted to hybridize EA and Branch and Bound algorithms in
which lower bounds are computed using Interval Analysis. Integrative methods em-
bed one algorithm within the other. Sotiropoulos et al. [2] used an Interval Branch and
Bound (IB&B) to reduce the domain to a list of ε-large subspaces. A Genetic Algo-
rithm (GA) [3] was then initialized within each subspace to improve the upper bound
of the global minimum. Zhang et al. [4] and Lei et al. [5] used respectively a GA and
mind evolutionary computation within the IB&B to improve the bounds and the order
of the list of remaining subspaces. In a previous communication [6], we proposed a
cooperative approach combining the efficiency of a GA and the reliability of Interval
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Analysis. We presented new optimality results for two multimodal benchmark func-
tions (Michalewicz, dimension 12 and rotated Griewank, dimension 8), demonstrating
the validity of the approach. However, techniques that exploit the analytical form of the
objective function, such as local monotonicity and constraint programming, were not
addressed. In this paper, we propose an advanced cooperative algorithm, Charibde
(Cooperative Hybrid Algorithm using Reliable Interval-Based methods and Differential
Evolution), in which a Differential Evolution algorithm cooperates with interval propa-
gation methods. New optimal results achieved on a benchmark of difficult multimodal
functions attest the substantial gain in performance.

The rest of the paper is organized as follows. Notations of Interval Analysis are
introduced in Section 2 and interval-based techniques are presented in Section 3. The
implementation of Charibde is detailed in Section 4. Results on a benchmark of test
functions are given in Section 5.

2 Interval Analysis

Interval Analysis (IA) bounds round-off errors due to the use of floating-point arith-
metic by computing interval operations with outward rounding [1]. Interval arithmetic
extends real-valued functions to intervals.

Definition 1 (Notations).

– An interval X = [X,X] with floating-point bounds defines the set {x ∈ R | X ≤
x ≤ X}. IR denotes the set of real intervals. We note m(X) = 1

2 (X + X) its
midpoint

– A box X = (X1, . . . , Xn) is an interval vector. We notem(X) = (m(X1), . . . ,m(Xn))
its midpoint

– We note ut(X,Y ) the convex hull of two boxes X and Y , that is the smallest box
that contains X and Y

In the following, capital letters represent interval quantities (interval X) and bold let-
ters represent vectors (box X, vector x).

Definition 2 (Interval extension; Natural interval extension). Let f : Rn → R be a
real-valued function. F : IRn → IR is an interval extension of f if

∀X ∈ IRn, f(X) = {f(x) | x ∈ X} ⊂ F (X)

∀(X,Y) ∈ IRn,X ⊂ Y ⇒ F (X) ⊂ F (Y)

The natural interval extension FN is obtained by replacing the variables with their
domains and real elementary operations with interval arithmetic operations.

The dependency problem The quality of enclosure of f(X) depends on the syntactic
form of f : the natural interval extensions of different but equivalent expressions may
yield different ranges (Example 1). In particular, IA generally computes a large over-
estimation of the image due to multiple occurrences of a same variable, considered as

85



3

different variables. This ”dependency” problem is the main source of overestimation
when using interval computations. However, appropriate rewriting of the expression
may reduce or overcome dependency: if f is continuous inside a box, its natural inter-
val extension FN yields the optimal image when each variable occurs only once in its
expression.

Example 1. Let f(x) = x2 − 2x, g(x) = x(x − 2) and h(x) = (x − 1)2 − 1, where
x ∈ X = [1, 4]. f , g and h have equivalent expressions, however computing their
natural interval extensions yields

FN ([1, 4]) = [1, 4]2 − 2× [1, 4] = [1, 16]− [2, 8] = [−7, 14]
GN ([1, 4]) = [1, 4]× ([1, 4]− 2) = [1, 4]× [−1, 2] = [−4, 8]
HN ([1, 4]) = ([1, 4]− 1)2 − 1 = [0, 3]2 − 1 = [0, 9]− 1 = [−1, 8]

We have f([1, 4]) = HN ([1, 4]) ⊂ GN ([1, 4]) ⊂ FN ([1, 4]).

3 Interval-based techniques

Interval Branch and Bound algorithms (IB&B) exploit the conservative properties
of interval extensions to rigorously bound global optima of numerical optimization
problems [7]. The method consists in splitting the initial search-space into subspaces
(branching) on which an interval extension F of the objective function f is evaluated
(bounding). By keeping track of the best upper bound f̃ of the global minimum f∗,
boxes that certainly do not contain a global minimizer are discarded (Example 2). Re-
maining boxes are stored to be processed at a later stage until the desired precision ε is
reached. The process is repeated until all boxes have been processed. Convergence cer-
tifies that f̃−f∗ < ε, even in the presence of rounding errors. However, the exponential
complexity of IB&B hinders the speed of convergence on large problems.

Example 2. Let us compute min
x∈X

f(x) = x4 − 4x2 over the interval X = [−1, 4]. The

natural interval extension of f is FN (X) = X4 − 4X2. The floating-point evaluation
f(1) = −3 yields an upper bound f̃ of f∗. Evaluating FN on the subinterval [3, 4]
reduces the overestimation induced by the dependency effect: FN ([3, 4]) = [17, 220].
Since this enclosure is rigorous, ∀x ∈ [3, 4], f(x) ≥ 17 > f̃ = −3 ≥ f∗. Therefore,
the interval [3, 4] cannot contain a global minimizer and can be safely discarded.

Interval Constraint Programming (ICP) aims at solving systems of nonlinear
equations and numerical optimization problems. Stemming from Interval Analysis and
Interval Constraint Programming communities, filtering/contraction algorithms [8] nar-
row the bounds of the variables without loss of solutions. The standard contraction
algorithm HC4Revise [9] carries out a double exploration of the syntax tree of a con-
straint to contract each occurrence of the variables (Example 3). It consists in an eval-
uation (bottom-up) phase that computes the elementary operation of each node, and a
backward (top-down) propagation phase using inverse functions.
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Example 3. Let 2x = z − y2 be an equality constraint, with x ∈ [0, 20], y ∈ [−10, 10]
and z ∈ [0, 16]. The elementary expressions are the nodes n1 = 2x, n2 = y2 and
n3 = z − n2.

The evaluation phase (Figure 1) computes n1 = 2 × [0, 20] = [0, 40], n2 =
[−10, 10]2 = [0, 100] and n3 = [0, 16]− [0, 100] = [−100, 16].

=

×

2 x

−

z ˆ

y 2
2

[2, 2] [0, 20]

[0, 40]

[-10, 10]

[0, 100][0, 16]

[-100, 16]

Fig. 1. HC4Revise: evaluation phase

The propagation phase (Figure 2) starts by intersecting n1 and n3 (steps 1 and 2),
then computes the inversion of each elementary expression (steps 3 to 6).

– steps 1 and 2: n′1 = n′3 = n1 ∩ n3 = [0, 40] ∩ [−100, 16] = [0, 16]

– step 3: x′ = x ∩ n′
1

2 = [0, 20] ∩ [0, 8] = [0, 8]

– step 4: z′ = z ∩ (n2 + n′3) = [0, 16] ∩ ([0, 100] + [0, 16]) = [0, 16]

– step 5: n′2 = n2 ∩ (z′ − n′3) = [0, 100] ∩ ([0, 16]− [0, 16]) = [0, 16]

– step 6: y′ = ut(y ∩ −
√
n′2, y ∩

√
n′2) = ut([−4, 0], [0, 4]) = [−4, 4]

=

×

2 x

−

z ˆ

y 2
2

[2, 2] [0, 8] [0, 20]

[0, 40][0, 16]

[-4, 4] [-10, 10]

[-100, 16][0, 16]

[0, 100][0, 16] [0, 16] [0, 16]

step 3

step 1

step 2

step 4

step 5

step 6

Fig. 2. HC4Revise: propagation phase

The initial box ([0, 20], [−10, 10], [0, 16]) has been reduced to ([0, 8], [−4, 4], [0, 16])
without loss of solutions.
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4 Charibde algorithm

We consider the following global optimization problem and we assume that f is differ-
entiable and that the analytical forms of f and its partial derivatives are available. We
note n the dimension of the search-space.

min
x∈D⊂Rn

f(x)

subject to gi(x) ≤ 0, i ∈ {1, . . . ,m}

Our original cooperative algorithm [6] combined a GA and an IB&B that ran inde-
pendently, and cooperated by exchanging information through shared memory in order
to accelerate the convergence. In this approach, the GA quickly finds satisfactory solu-
tions that improve the upper bound f̃ of the global minimum, and allows the IB&B to
prune parts of the search-space more efficiently.

The current work extends the core method described in [6]. Its behavior is depicted
in Figure 3. The interval-based algorithm embedded in Charibde follows a Branch &
Contract (IB&C) scheme (described in Algorithm 1), namely an IB&B algorithm that
integrates a contraction step based on HC4Revise. While an IB&B merely determines
whether a box contains a global minimizer, an IB&C contracts the boxes with respect
to the constraints gi(x) ≤ 0, i ∈ {1, . . . ,m} (feasibility) or ∂f

∂xi
= 0, i ∈ {1, . . . , n}

(local optimality) and f ≤ f̃ . Exploiting the analytical form of the objective function
and its derivatives achieves faster convergence of the hybrid algorithm, because efficient
Constraint Programming techniques may prune parts of the search-space that cannot
contain a global minimizer or that are infeasible. Filtering algorithms show particular
efficiency when f̃ is a good approximation of the global minimum provided by the
EA thread, hence the necessity to quickly find an incumbent solution. Charibde thus
outperforms our previous algorithm by far.

Interval Branch
& Contract

SHARED
MEMORY

xworst

xbest f~

x~

step

Differential 
Evolution

1 step 2

step 4 step 3

Fig. 3. Charibde algorithm

We note x̃ the best known solution, such that F (x̃) = f̃ . The cooperation between
the two threads boils down to 4 main steps:

– step 1: Whenever the best known DE evaluation is improved, the best individual
xbest is evaluated using IA. The upper bound of the image F (xbest) – guaranteed
to be an upper bound of the global minimum – is stored in the shared memory

– step 2: The best known upper bound F (xbest) is retrieved at each iteration from
the shared memory and compared to the current best upper bound f̃ . If the latter
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is improved, it is updated to prune more efficiently parts of the search-space that
cannot contain a (feasible) global minimizer

– step 3: Whenever the evaluation of the center m(X) of a box improves f̃ , x̃ and f̃
are updated and stored in the shared memory in order to be integrated to the DE
population

– step 4: x̃ replaces the worst individual xworst of DE, thus preventing premature
convergence

In the following, we detail the implementations of the two main components of our
algorithm: the deterministic IB&C thread and the stochastic DE thread.

4.1 Interval Branch & Contract thread

We note L the priority queue in which the remaining boxes are stored and ε the desired
precision. The basic framework of IB&C algorithms is described in Algorithm 1.

Algorithm 1 Interval Branch and Contract framework
f̃ ← +∞ . best found upper bound
L ← {X0} . priority queue of boxes to process
repeat

Extract a box X from L . selection rule
Compute F (X) . bounding rule
if X cannot be eliminated then . cut-off test

Contract(X, f̃) . filtering algorithms
Update f̃ . midpoint test
Bisect X into X1 and X2 . branching rule
Store X1 and X2 in L

end if
until L = ∅
return (f̃ , x̃)

The following rules have been experimentally tested and selected according to their
performances:

Selection rule: The box X for which F (X) is the largest is extracted from L
Bounding rule: Evaluating F (X) yields a rigorous enclosure of f(X)
Cut-off test: If f̃ − ε < F (X), X is discarded as it cannot improve f̃ by more than ε
Midpoint test: If the evaluation of the midpoint of X improves f̃ , f̃ is updated
Branching rule: X is bisected along the k-th dimension, where k is chosen accord-

ing to the round-robin method (one dimension after another). The two resulting
subboxes are inserted in L to be processed at a later stage

4.2 Differential Evolution thread

Differential Evolution (DE) is an EA that combines the coordinates of existing in-
dividuals with a particular probability to generate new potential solutions [10]. It has
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shown great potential for solving difficult optimization problems, and has few control
parameters. Let us denote NP the population size, W > 0 the weighting factor and
CR ∈ [0, 1] the crossover rate. For each individual x of the population, three other
individuals u, v and w, all different and different from x, are randomly picked in the
population. The newly generated individual y = (y1, . . . , yj , . . . , yn) is computed as
follows:

yj =

{
uj +W × (vj − wj) if j = R or rand(0, 1) < CR

xj otherwise
(1)

R is a random index in {1, . . . , n} ensuring that at least one component of y differs
from that of x. y replaces x in the population if f(y) < f(x).

Boundary constraints: When a component yj lies outside the bounds [Aj , Bj ] of the
search-space, the bounce-back method [11] replaces yj with a component that lies
between uj (the j-th component of u) and the admissible bound:

yj =

{
uj + rand(0, 1)(Aj − uj), if yj < Aj

uj + rand(0, 1)(Bj − uj), if yj > Bj

(2)

Evaluation: Given inequality constraints {gi | i = 1, . . . ,m}, the evaluation of an
individual x is computed as a triplet (fx, nx, sx), where fx is the objective value,
nx the number of violated constraints and sx =

∑m
i=1 max(gi(x), 0). If at least

one of the constraints is violated, the objective value is not computed
Selection: Given the evaluation triplets (fx, nx, sx) and (fy, ny, sy) of two candidate

solutions x and y, the best individual to be kept for the next generation is computed
as follows:

– if nx < ny or (nx = ny > 0 and sx < sy) or (nx = ny = 0 and fx < fy)
then x is kept

– otherwise, y replaces x
Termination: The DE has no termination criterion and stops only when the IB&C

thread has reached convergence

5 Experimental results

Charibde has been tested on the benchmark of functions reported in Table 1. This
benchmark includes quadratic, polynomial and nonlinear functions, as well as bound-
constrained and inequality-constrained problems. Both the best known minimum in the
literature and the certified global minimum3 computed by Charibde are given. Some
global minima may be analytically computed for separable or trivial functions, but for
others (Rana and Egg Holder functions) no result concerning deterministic methods
exists in the literature.

Partial derivatives of the objective function are computed using automatic differen-
tiation [12]. To compute the partial derivatives of the functions that contain absolute
values (Rana, Egg Holder, Schwefel and Keane), we use an interval extension based on
the subderivative of | · | [13].

3 Corresponding solutions are available upon request
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Table 1. Test functions with best known and certified minima

n Type Reference Best known Certified minimum
minimum by Charibde

Bound-Constrained Problems
Rana 4 nonlinear [14] - -1535.1243381
Egg Holder 10 nonlinear [15] -8247 [16] -8291.2400675249
Schwefel 10 nonlinear -4189.828873 [17] -4189.8288727
Rosenbrock 50 quadratic 0 0
Rastrigin 50 nonlinear 0 0
Michalewicz 75 nonlinear - -74.6218111876
Griewank 200 nonlinear 0 0
Inequality-Constrained Problems
Tension 3 polynomial [18] 0.012665232788319 [19] 0.0126652328
Himmelblau 5 quadratic [18] -31025.560242 [20] -31025.5602424972
Welded Beam 4 nonlinear [18] 1.724852309 [21] 1.7248523085974
Keane 5 nonlinear [22] -0.634448687 [23] -0.6344486869

5.1 Computation of certified minima

The average results over 100 runs of Charibde are presented in Table 2. ε is the
numerical precision of the certified minimum such that f̃ − f∗ < ε, (NP , W , CR)
are the DE parameters, tmax is the maximal computation time (in seconds), Smax is the
maximal size of the priority queueL, nef is the number of evaluations of the real-valued
function f and neF = neDE

F + neIB&C
F is the number of evaluations of the interval

function F computed in the DE thread (neDE
F ) and the IB&C thread (neIB&C

F ). Note
that neDE

F represents the number of improvements of the best DE evaluation. Because
the DE thread keeps running as long as the IB&C thread has not achieved convergence,
nef is generally much larger than the number of evaluations required to reach f̃ .

Table 2 shows that Charibde has achieved new optimality results for 3 func-
tions (Rana, Egg Holder and Michalewicz) and has proven the optimality of the known
minima of the other functions. As variables all have multiple occurrences in the expres-
sion of Rana, Egg Holder and Keane’s functions, their natural interval extensions are
strongly subject to dependency. They are extremely difficult for interval-based solvers
to optimize. Note that the constraints of Keane’s function do not contain variables with
multiple occurrences, and are therefore not subject to dependency. However, they re-
main highly combinatorial due to the sum and the product operations, which makes
constraint propagation rather inefficient.

Figure 4 portrays the average comparison of performance between Charibde and
standalone DE and IB&C over 100 runs on the Griewank function (n = 200). The stan-
dalone DE remains stuck in a local optimum close to 0 after 22s, while the standalone
IB&C achieves convergence in 20.5s after several phases of stagnation. This is due to
the (crude) upper bounds of f∗ evaluated at the center of the boxes. In Charibde, the
IB&C provides the DE thread with a better solution than the current best known evalua-
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Table 2. Average results over 100 runs

n ε NP W CR tmax Smax nef neF

Bound-Constrained Problems
Rana 4 10−6 50 0.7 0.5 222 42 274847000 47 + 27771415
Egg Holder 10 10−6 50 0.7 0.5 768 45 423230200 190 + 423230200
Schwefel 10 10−6 40 0.7 0.5 2.3 32 1462900 150 + 362290
Rosenbrock 50 10−12 40 0.7 0.9 3.3 531 368028 678 + 664914
Rastrigin 50 10−15 40 0.7 0 0.3 93 29372 29 + 42879
Michalewicz 75 10−9 70 0.5 0 138 187 6053495 1203 + 5796189
Griewank 200 10−12 50 0.5 0 11.8 134 188340 316 + 116624
Inequality-Constrained Problems
Tension 3 10−9 50 0.7 0.9 3.8 80 1324026 113 + 1057964
Himmelblau 5 10−9 50 0.7 0.9 0.07 139 12147 104 + 36669
Beam 4 10−12 50 0.7 0.9 2.2 11 316966 166 + 54426
Keane 5 10−4 40 0.7 0.5 472 23 152402815 125 + 99273548

tion, which prevents premature convergence toward a local optimum. The convergence
is eventually completed in 5.2s, with a numerical proof of optimality.
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Fig. 4. Comparison of Charibde and standalone DE and IB&C (Griewank function, n = 200)

5.2 A word on dependency

When partial derivatives are available, detecting local monotonicity with respect to a
variable cancels the dependency effect due to this variable (Definition 3 and Example
4). In Definition 3, we call a monotonic variable a variable with respect to which f is
monotonic.

Definition 3 (Monotonicity-based extension). Let f be a function involving the set of
variables V . Let X ⊆ V be a subset of k monotonic variables andW = V \ X the set
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of variables not detected monotonic. If xi is an increasing (resp. decreasing) variable,
we note x−i = xi and x+i = xi (resp. x−i = xi and x+i = xi). fmin and fmax are
functions defined by:

fmin(W) = f(x−1 , . . . , x
−
k ,W)

fmax(W) = f(x+1 , . . . , x
+
k ,W)

The monotonicity-based extension FM of f computes:

FM = [fmin(W), fmax(W)]

Example 4. Let f(x) = x2 − 2x and X = [1, 4]. As seen in Example 1, FN ([1, 4]) =
[−7, 14]. The derivative of f is f ′(x) = 2x − 2, and F ′N ([1, 4]) = 2 × [1, 4] − 2 =
[0, 6] ≥ 0. f is thus increasing with respect to x ∈ X . Therefore, the monotonicity-
based interval extension computes the optimal range: FM ([1, 4]) = [F (X), F (X)] =

[F (1), F (4)] = [−1, 8] = f([1, 4]).

This powerful property has been exploited in [24] to enhance constraint propagation.
However, the efficiency of this approach remains limited because the computation of
partial derivatives is also subject to overestimation (Example 5).

Example 5. Let f(x) = x3 − x2, f ′(x) = 3x2 − 2x and x ∈ X = [0, 23 ]. Since
f ′(X) = {f ′(x) | x ∈ X} = [− 1

3 , 0], f is decreasing with respect to x onX . However,
F ′(X) = 3 × [0, 23 ]

2 − 2 × [0, 23 ] = [− 4
3 ,

4
3 ] whose sign is not constant. Dependency

precludes us from detecting the monotonicity of f . Bisecting X is necessary in order to
reduce the overestimation of f ′(X) computed by IA.

6 Conclusion

Extending the basic concept of [6], we have presented in this paper a new cooperative
hybrid algorithm, Charibde, in which a stochastic Differential Evolution algorithm
(DE) cooperates with a deterministic Interval Branch and Contract algorithm (IB&C).
The DE algorithm quickly finds incumbent solutions that help the IB&C to improve
pruning the search-space using interval propagation techniques. Whenever the IB&C
improves the best known upper bound f̃ of the global minimum f∗, the corresponding
solution is used as a new DE individual to avoid premature convergence toward local
optima.

We have demonstrated the efficiency of this algorithm on a benchmark of diffi-
cult multimodal functions. Previously unknown results have been presented for Rana,
Egg Holder and Michalewicz functions, while other known minima have been certi-
fied. By preventing premature convergence in the EA and providing the IB&C with a
good approximation f̃ of f∗, Charibde significantly outperforms its two standalone
components.
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Abstract. Medium-voltage distribution network expansion planning in-
volves finding the most economical adjustments of both the capacity and
the topology of the network such that no operational constraints are vi-
olated and the expected loads, that the expansion is planned for, can
be supplied. This paper tackles this important real-world problem us-
ing realistic yet computationally feasible models and, for the first time,
using two instances of the recently proposed class of Gene-pool Opti-
mal Mixing Evolutionary Algorithms (GOMEAs) that have previously
been shown to be a highly efficient integration of local search and ge-
netic recombination, but only on standard benchmark problems. One
GOMEA instance that we use employs linkage learning and one instance
assumes no dependencies among problem variables. We also conduct ex-
periments with a widely used traditional Genetic Algorithm (GA). Our
results show that the favorable performance of GOMEA instances over
traditional GAs extends to the real-world problem at hand. Moreover,
the use of linkage learning is shown to further increase the algorithm’s
effectiveness in converging toward optimal solutions.

Keywords: Evolutionary Algorithms, Linkage Learning, Distribution
Network, Power System Expansion Planning

1 Introduction

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) combines
genetic recombination as is reminiscent of Genetic Algorithms (GAs) with model-
building as is reminiscent of Estimation of Distribution Algorithm (EDAs) and
direct improvements as is reminiscent of Local Search (LS) [1]. The model used
in GOMEA describes linkage relations between variables, i.e. which variables
should be copied jointly when performing genetic recombination. Various sub-
classes of the general linkage model are possible, ranging from allowing only fully
independent linkage relations to allowing overlapping linkage relations. Based on
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the chosen and then learned linkage structure, GOMEA performs variation by
intensively mixing building blocks as identified by the linkage relations in a
greedy manner. The efficiency of GOMEA has so far been shown on a number
of academic benchmarks [1, 2], but not yet on real-world optimization problems.

A medium-voltage (MV) distribution network carries electricity from the
(sub)transmission network to MV consuming units [3]. MV distribution network
expansion planning (DNEP) is an important real-world engineering problem. As
the loads (i.e. power consumptions) at different locations increase and/or newly
appeared loads need connections to the network, various electrical components
in the distribution network require replacement or new components must be in-
stalled. Both the capacities of the components and the topology of the network
have to be taken into account. There exist various MV network layouts but the
two most common topologies are: radial topology and open loop topology [3]. Ra-
dial topologies, in which every consuming unit is supplied by only one electrical
feed path, are often used in distribution networks with overhead lines, especially
for rural areas [3]. This paper focuses on the open loop layout, which is used for
distribution networks with underground cables, typically found in urban areas
of dense populations. Such MV networks contain groups of several consuming
units (load points). In each group, consuming units are physically connected one
by one by cables forming the shape of a loop. However, in normal operation, due
to management and protection policies, one cable of every loop is put into an
inactive state which creates an opening in the loop so that the network operates
in a radial manner. Those cables are put in reserve to be used for reconfiguring
the MV network when unexpected faults happen on active cables [3]. A feasible
expansion plan is one that satisfies all operation and configuration constraints.
An optimal plan is one that is feasible and has minimum expansion costs. In this
paper, investment expenses are of sole interest.

There exist numerous studies into DNEP but the problem modelling is still
far from being standardized. Every network operator has a different policy re-
garding the operation constraints of their power systems and different reposi-
tories of electrical facilities. Most studies evaluate the reliability of distribution
networks based on the average failure rates and restoration times of compo-
nents, in which reserve cables are considered as options to enhance the network
reliability [4, 5]. The result of such reliability analysis can then be capitalized
into customer outage cost to include in the overall cost to be optimized [4] or
can be treated as a separate objective function [5]. However, it is shown that
reliability in practice is a relative index as its calculation involves many intri-
cate problems with high uncertainty [6]. In this paper, we therefore consider
the capacity of reserve cables, from a different and more practically relevant
perspective, as a network configuration constraint, which is termed as reconfig-
urability. Reconfigurability requires the network to have enough reserve cables
with adequate capacities to bring the network back to operation when an outage
happens on some active cable. Although the cost function to be optimized is
relatively simple and the problem variables are even pairwise independent in it,
the constraint functions are far more involved and require dedicated electrical
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engineering computations (e.g. power flow calculations) that involve the entire
network, effectively introducing dependencies between problem variables. It is
therefore interesting, in addition to comparing the effectiveness of GOMEA with
the commonly employed traditional GA, to see whether the use and usefulness of
linkage learning also extends from traditional benchmark problems to real-world
problems such as the one at hand.

The remainder of this paper is organized as follows. Section 2 outlines GOMEA
and explains its components. Section 3 presents the anatomy of a conventional
distribution network and important constraints. Section 4 shows and discusses
the experimental results, while Section 5 concludes the paper.

2 Gene-pool Optimal Mixing Evolutionary Algorithm

Classic GAs have difficulty solving an optimization problem that has optimal
solutions made of multivariate building blocks whose constitutive problem vari-
ables are scattered over the solution representation string [7]. Traditional re-
combination operators of GAs are either not able to juxtapose building blocks
of nonconsecutive variables (i.e. 1- or 2-point, or uniform crossover) or too disrup-
tive to preserve enough long building blocks (i.e. in case of uniform crossover).
EDAs were developed with an emphasis on linkage learning to help to detect
and preserve multivariate dependencies, but in EDAs this comes at the cost of
estimating the complete probability distribution, which is expensive and may
be unnecessary. On the other hand, problems with hierarchical dependencies
provide a huge challenge for a classic GA as its genetic recombination is only
horizontal and hierarchical dependencies (i.e. building blocks of building blocks)
cannot be exploited directly. The reason for this is that there is no intermediate
checking for improvements during genetic recombination, causing higher-level
building blocks to automatically overwrite and undo the effects of mixing lower-
level building blocks. GOMEA overcomes these issues by effectively integrating
local search into variation, making its overall procedure closer to that of genetic
local search [8]. For solving DNEP, GOMEA is therefore a strong candidate
optimization algorithm.

2.1 Family of Subsets

The GOMEA uses the concept of family of subsets (FOS) as the linkage model
to match the structure of optimization problems [1]. A FOS, denoted F , is a set
of subsets of a certain set S , which means F ⊂ P(S ), i.e. the powerset of S .
Normally, set S is the set of all variable indices {1, 2, . . . , l}. A FOS F can be

written as F = {F 1,F 2, . . . ,F |F|} where F i ⊆ {1, 2, . . . , l}, i ∈ {1, 2, . . . , |F|}.
To ensure all decision variables are considered in the variation operator, every
variable index is contained in at least one subset in F , i.e. ∀i ∈ {1, 2, . . . , l} :
(∃j ∈ {1, 2, . . . , |F|} : i ∈ F j). In this paper, we consider two FOS structures.

Univariate Structure: This structure, which is arguably the simplest struc-
ture possible, considers every decision variable to be independent from each
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other. The corresponding FOS F thus contains only singleton subsets F i =
{i}, i ∈ {1, 2, . . . , l}. As there is only one possible configuration, no linkage learn-
ing is required. The use of the univariate structure is perhaps best known from
GAs, where it translates into the well-known uniform crossover operator (UX).

Linkage Tree Structure: The linkage tree (LT) structure represents depen-
dencies among decision variables in a hierarchical manner. The bottom level of
the tree (i.e. leaf nodes) contains all singleton subsets, i.e. the univariate struc-
ture. Intermediate levels contains subsets F i having more than one decision
variable index. Any bivariate or multivariate subset F i is the result of combin-
ing two subsets F j and F k such that F j ∩ F k = ∅, |F j | < |F i|, |F k| < |F i|
and F j ∪ F k = F i. The top level (root node) is the set S itself containing all
decision variable indices. This root node, which indicates that all variables are
jointly dependent, is excluded from the linkage tree FOS as performing building
block mixing based on this subset for any two solutions only results in the same
solutions.

The LT is learned from the selected candidate solutions at every generation by
performing a hierarchical clustering procedure where distances between clusters
are computed using the average pair-wise distance over all pairs of variables.
For details about clustering algorithms and different distance metrics, please
refer to the literature [1, 2]. Here, we used mutual information (MI) as the basis
of distance between two variables (higher MI values mean a lower distance).
We further note that in this paper, variables are not binary but rather have a
larger bounded integer domain. However, since the search space is still Cartesian,
the extension of MI from binary to integer variables is straightforward. The
GOMEA variant that uses the LT structure as its linkage model is also known
as Linkage Tree Genetic Algorithm (LTGA)[1]. It is worthwhile to mention that
the computational complexity of learning an LT is low compared to typical
higher-order models in EDAs (i.e. O(nl2) versus O(nl3)).

2.2 Optimal Mixing and Forced Improvements

GOMEA uses a procedure called Gene-pool Optimal Mixing (GOM) as its vari-
ation operator [1]. For each existing parent solution in the population, exactly
one offspring is generated by mixing building blocks of that parent with those of
other solutions following the linkages specified by subsets in FOS F . First, the
parent solution is cloned. Then, the FOS is traversed and for each subset F i ∈ F
a donor solution is chosen randomly from the population. The values in the donor
corresponding to the variables in the linkage group are copied into the parent
solution. If such mixing results in an improvement, the changes are accepted,
otherwise the changes are reverted. Bosman et al. [2] showed that if GOM also
accepts changes that generate equally good solutions, better performance can be
achieved.

If a solution cannot be improved by GOM alone, a procedure called forced
improvement (FI) is performed [9]. In essence, FI is an additional GOM opera-
tion with the current best solution always as the donor. However, in this case,
optimal mixing stops as soon as any single improvement is achieved. Because
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GOMEA //population size n
for i ∈ {1, 2, . . . , n} do
Pi ← CreateRandomSolution()
EvaluateFitness(Pi)

xbest ← argmaxx∈P{fitness[x]}
t← 0; tNIS ← 0
while ¬TerminationConditionsSatisfied do
S ← TournamentSelection(P, n, 2)
LearnModel(S)
for i ∈ {1, 2, . . . , n} do
Oi ← FI-GOM(Pi)

P ← O
xbest ← argmaxx∈P{fitness[x]}
if fitness[xbest(t)] ≥ fitness[xbest] then

tNIS ← 0;xbest ← xbest(t)
else

tNIS ← tNIS + 1
t← t + 1

FI-GOM(x)
b← o← x; fitness[b]← fitness[o]← fitness[x]; changed← false
for i ∈ {1, 2, . . . , |F|} do

p← Random({P1,P2, . . . ,Pn})
oF i ← pF i

if oF i 6= bF i then
EvaluateFitness(o)
if fitness[o] ≥ fitness[b] then

bF i ← oF i ; fitness[b]← fitness[o]; changed← true
else

oF i ← bF i ; fitness[o]← fitness[b]

if ¬changed or tNIS > 1 + blog10(n)c then
changed← false
for i ∈ {1, 2, . . . , |F|} do

oF i ← xbest
F i

if oF i 6= bF i then
EvaluateFitness(o)
if fitness[o] > fitness[b] then

bF i ← oF i ; fitness[b]← fitness[o]; changed← true
else

oF i ← bF i ; fitness[o]← fitness[b]
if changed then breakfor

if ¬improved then

o← xbest; fitness[o]← fitness[xbest]

Fig. 1: Pseudo-code for GOMEA [2]

accepting solutions of equal quality can potentially stall the algorithm indefi-
nitely on a fitness plateau, GOMEA is found to have better performance if FI
is also triggered when the number of continuous generations that the best solu-
tion is not updated, which is termed as no-improvement stretch (NIS), is larger
than 1 + blog10(n)c [2]. FI is reported to ensure efficient convergence while not
continuously reducing population diversity [9]. The pseudo-code for GOMEA
with GOM and FI is outlined in Figure 1. Note that GOMEA typically does a
lot more evaluations per generation than a classic GA would do, but GOMEA
also typically requires far smaller population sizes and far less generations to
converge.

3 MV Distribution Network Expansion Planning

Distribution network expansion planning (DNEP) involves decision making about
what, where, when and how electrical components in a power distribution sys-
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tem should be adjusted to meet the forecasted growth in power demands at
consuming units. In this paper, we take a traditional conservative approach and
consider only the highest possible peak load for each consuming unit in the net-
work. The network must be configured such that it can handle those loads and
thus it is tested with that load profile. In this paper, we focus on a key part of the
problem: deciding upon the locations and the types of adjustments. Available
enhancement options are: changing existing devices, and installing new devices
in the network, without specifying the time horizon. This paper considers two
kinds of electrical devices: cables and transformers. An optimal expansion plan
requires minimum investment cost while satisfying all operation and configura-
tion constraints (see Section 3.2).

3.1 MV Distribution Network Encoding

An MV distribution network can be seen as a graph with a set of nodes (vertices)
and a set of branches (edges). A node can be a substation, which is the source
of power supply, or it can be a consuming unit, which demands and consumes
power. Every branch connects two nodes, and all branches together form feed
paths for electric currents flowing from power substations to consuming units. In
a DNEP problem, the power supply capacities of substations and power demands
of consuming units form the inputs. The outputs are decisions about capacities
of all branches. Available options are: whether to connect two nodes by a branch
(an overhead line or an underground cable, or a transformer if two nodes have
different voltages), the capacity of the branch, and whether the branch should
be active or in reserve.

To solve the DNEP for a network, we need to specify all the currently existing
branches and a restricted set of potential candidate branches that can be newly
added into the network. This set of potential branches is often determined by
using expert knowledge to disregard unnecessary branches. Let l denote the total
number of branches, and let m denote the total number of nodes. We represent
a distribution network as a vector of length l of integer-value elements

x = (x1, x2, . . . , xl), xi ∈ Ω(xi), i ∈ {1, 2, . . . , l} (1)

where each xi corresponds with the i-th branch of the network. The set of possible
devices Ω(xi) that can be installed at each branch xi depends on policies and
the repository of each network operator. We use an integer number to indicate
which device to install at a branch. The status of each xi is defined as follows

• xi = 0: There is no device at the i-th branch. This means that the previously
existing device is removed or that no device is decided to be installed at the
i-th branch.
• xi = id > 0: A device with identification number id ∈ Ω(xi) is installed at

the i-th branch.
• xi = −id < 0: A device with identification number id ∈ Ω(xi) is put in

reserve at the i-th branch. The device is installed into the network but it
does not take part in the normal operation. It is used to reconfigure the
system in emergency cases.
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Note that the original MV network has the xi of currently non-existing branches
set to 0.

3.2 Optimization Problem Formulation

Let x = (x1, x2, . . . , xl) be the original network and let x′ = (x′1, x
′
2, . . . , x

′
l) be

an adjusted network. DNEP minimizes the investment cost as follows

Min f(x,x′) =

l∑

i=1

cost(xi, x
′
i) (2)

where

cost(xi, x
′
i) =

{
0 if xi = x′i

cost of changing xi to x′i if xi 6= x′i
(3)

For a given (test) load profile, the following constraints must be satisfied:

I Voltage constraints

|Vi|MIN ≤ |Vi| ≤ |Vi|MAX
, i ∈ {1, 2, . . . ,m} (4)

where |Vi| is the voltage magnitude at node i, and [|Vi|MIN
, |Vi|MAX

] is
the allowable range of voltage magnitude at node i. We quantify the degree
of the voltage constraint violation of a network by summing the amount
of out-of-bound voltage magnitude at every node (i.e. (|Vi|MIN − |Vi|) if

|Vi| < |Vi|MIN
or (|Vi| − |Vi|MAX

) if |Vi| > |Vi|MAX
).

II Line flow constraints (or device capacity constraints)

|Si| ≤ |Si|MAX
, i ∈ {1, 2, . . . , l} (5)

where |Si| is the power flow through the device installed at branch xi, i.e. a

cable or a transformer, and |Si|MAX
is the nominal capacity of that device.

There should be no overload at any device. We quantify the degree of the line
flow constraint violation of a network by summing the amount of overload
at every branch (i.e. (|Si| − |Si|MAX

) if |Si| > |Si|MAX
).

III Radial operation constraint: All the active cables together have to form
a radial configuration. This means that any consuming unit is supplied
electricity via one single feed path in normal operation.

IV Reconfigurability constraint: When, during normal operation, faults
happen on an active branch, that branch is isolated from the network by
opening its corresponding switches. The network is then reconfigured by
closing the switches of reserve branches so that disconnected consuming
units are served again. The network may operate with loops in an emergency
situation and can endure a mild overload in a short time while the faulty
branch is being repaired. The degrees of emergency capacity of equipments
are decided by network operators. In this paper, we assume that equipment
emergency capacity is 120% of its nominal capacity.

Constraints I, II, and III are commonly adopted in the literature [4, 5]. The
constraint IV is employed here due to reasons mentioned in Section 1.
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3.3 Solution Evaluation

As DNEP is a constrained optimization problem, the fitness evaluation for an
expansion plan involves both the investment cost calculation and constraint eval-
uations. When we need to compare any two solutions, as in selection or the opti-
mal mixing procedures, we use the concept of constraint domination. A feasible
solution is one that satisfies all constraints. A feasible solution is always better
than an infeasible one, a cheap feasible solution is better than a more expensive
one, and if both solutions are infeasible then the one with less or equal degree
of violation of all constraints and strictly less violation of at least one constraint
is the better solution.

While calculating investment cost is a trivial operation, constraint evalua-
tions are computationally expensive. For each expansion plan, we must perform
a power flow calculation (PLC) [10] to obtain the value of the voltage at each
node and the power flowing through each branch. These are used to check the
constraints (I) and (II). In essence, a PLC involves solving a system of non-linear
equations, called the AC power flow model. Due to inherent technical reasons,
the commonly used cheaper linear DC model cannot be used for distribution
network evaluation without a significant compromise on accuracy. For details
of PLC, see e.g. [10]. Therefore, constraints evaluations are computationally ex-
pensive.

A complete fulfilment of the reconfigurability constraint requires performing
a single-line contingency for every branch in the network: a branch is assumed
to be failed, the network is then reconfigured back to operation, and the power
flowing in each branch is re-calculated. This paper considers a computationally
cheaper constraint evaluation commonly adopted in practice. It performs single
line contingency only on cables branching directly from substations as these
cables carry the heaviest loads before distributing power to subsequent nodes.

4 Experiments

4.1 Test cases and experiment setup

Based on real-world data, we designed two MV distribution networks as opti-
mization benchmarks.

• Network 1: an MV distribution network of one open loop contains 18 nodes
(1 substation, 9 consuming units, in which each transformer is represented
by 2 nodes having different base voltages) and 25 possible branches (10
existing cables, 8 existing transformers, and 7 potential cable connections).
The topology and experiment current and forecasted loads of Network 1 can
be found in Fig. 2 and Table 1.

• Network 2: an MV distribution network of two open loops contains 31 nodes
(1 substation and 30 consuming units) and 59 possible branches (32 existing
cables and 27 potential cable connections). Further details are withheld for
reasons of confidentiality.
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In this paper, we consider 5 common types of MV cables, differentiated by their
areas of conductor: 120, 150, 240, 400, and 630 mm2. We also consider 5 common
options of transformers, denoted by their nominal capacities: 100, 160, 250, 400,
and 630 kV A.

Table 1: Network 1: current loads and forecasted loads at each consuming unit. PD and
QD are the active and reactive power demands, which make up the load at each node.
Other nodes have the base voltage of 10 kV and do not have power demand.

Node ID
Base voltage Current Load Forecasted Load

(kV) PD QD PD QD

3 10 0.6735 0.3951 3.6735 0.3951
11 0.4 0.187 0.1159 0.287 0.1159
12 0.4 0.272 0.1686 0.372 0.1686
13 0.4 0.2818 0.1747 0.2818 0.1747
14 0.4 0.272 0.1747 0.272 0.1686
15 0.4 0.255 0.158 0.355 0.158
16 0.4 0.0808 0.050 0.3808 0.05
17 0.4 0.1785 0.1106 0.2785 0.1106
18 0.4 0.2975 0.1844 0.3975 0.1844

We test 3 optimizers: GOMEA-LT (GOMEA with linkage tree FOS), GOMEA-
UNI (GOMEA with univariate FOS), and a traditional genetic algorithm (GA)
with uniform crossover and tournament selection similarly configured as in [1].
For every optimizer, we test it with 10 different population sizes which are ex-
ponentially increased from 21 to 210. For every population size that we con-
sider, we perform 30 independent runs of each optimizer. Each run starts with
a population of randomly generated expansion plans (network topology and the
equipment type at each element). We terminate a run only when the whole pop-
ulation converges to the same solution because in practice, the optimum is not
know beforehand and we would like to see the best solutions that each optimizer
possibly can obtain.

4.2 Results

Fig. 2 shows MV Network 1 before enhancement and the best found expansion
plan. To satisfy the forecast load demand, a new cable should connect node 1
(the substation) and node 3. The branch connecting node 2 and 3 should be put
in reserve so that the network can operate radially. There are five overloaded
transformers, and all of them should be replaced by ones with higher capacities.

Fig. 3 shows the capability of GOMEA-LT, GOMEA-UNI, and GA in min-
imizing the investment cost for the enhancement of Network 1 as the number
of fitness evaluations increases. Fitness evaluations for each candidate expan-
sion plan involve power flow calculations, which are the most computationally
expensive operations in the optimization process. Thus, different from academic
benchmarks, fitness evaluation for the DNEP problem, truly dominates the com-
puting time of all 3 optimizers. Hence, we use the number of fitness evaluations
that each optimizer needs to perform from beginning until convergence as an in-
dicator of computing time. Fig. 3 shows both instances of GOMEA have better
performances than the traditional GA. The traditional GA consumes much more
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Fig. 2: Network 1. Original topology: Potential cables are represented by dashed lines.
Reserve cables are marked with flag symbols. Transformers are denoted by pairs of
overlapped circles. Arrow symbols indicate power demands at consuming units. After
enhancement: Highlighted components are suggested to be replaced or newly installed.
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Fig. 3: Performance of GOMEA-LT, GOMEA-UNI and GA on minimizing the invest-
ment cost for enhancement of Network 1. Error bars show standard deviation.

computing time to come close to GOMEA but even for population size 1024, the
traditional GA still cannot converge reliably to the same best solution obtained
by GOMEA. If we use a too small population size, it is difficult to find feasible
solutions, which explains why the line representing GA goes up first (feasible
solutions can be more expensive than infeasible solutions) before it starts to go
down when feasible solutions are found. Network 1 is a small distribution net-
work containing only 25 branches (i.e. the number of decision variables), and
while the variables are independent when evaluating the investment cost func-
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tion, they are also linked when evaluating the constraints. However, depending
on the problem instance, these linkages may be weak and of little influence,
especially if the problem size is small. This explains why GOMEA-UNI, which
assumes no dependencies among variables, requires less computing times than
GOMEA-LT, which has an overhead of learning linkage trees and evaluating
unnecessary mixings of (weak) linkage groups. This calls for the need of filtering
spurious linkage groups in the linkage learning process as pointed out in [2]. It
should be noted that when considering reliable convergence (30/30 runs) to the
best solution ever found, GOMEA-LT requires less evaluations. The convenience
of independent decision variables that GOMEA-UNI can exploit is not available
in more complicated networks, which can be seen in case of Network 2.
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Fig. 4: Performance of GOMEA-LT, GOMEA-UNI and GA on minimizing the invest-
ment cost for enhancement of Network 2. Error bars show standard deviation.

Fig. 4 shows the experimental results of 3 optimizers on solving DNEP for
Network 2. This test case has a much larger and more complicated search space
compared to Network 1. It can be seen that if we continue to run the optimization
process with larger population sizes (and hence more power flow calculations),
better solutions may still be obtained. Here, GOMEA-LT demonstrates that
it has the best performance in comparison with the other 2 optimizers. The
traditional GA has difficulty finding feasible solutions, let alone the optimum.
GOMEA-UNI has a good performance here due to the intensive optimal mixing
variation operator. However, without linkage learning, GOMEA-UNI does not
obtain solutions of high quality as those found by GOMEA-LT. GOMEA-UNI
can locate good solutions only if the decision variables are independent or weakly
linked as in case of Network 1. Otherwise, GOMEA-UNI cannot efficiently find
solutions that require the juxtaposition of multivariate linkage groups, e.g. as
in the classic trap function benchmarks. GOMEA-LT wins over its univariate
sibling in these cases.
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5 Conclusions

The recently-developed gene-pool optimal mixing evolutionary algorithm
(GOMEA) has so far been benchmarked on various theoretical optimization
problems in the literature. Meanwhile, the long-existing traditional genetic al-
gorithm (GA) has been widely used for numerous real-world optimization tasks.
In this paper, we tackled the real-world problem of medium-voltage distribu-
tion network expansion planning (DNEP) with two instances of GOMEA: one
with the univariate structure and one with the linkage tree. GOMEA was found
to have much better performance than the traditional GA in terms of comput-
ing time and quality of the obtained solutions. Moreover, experimental results
showed that linkage learning is truly beneficial for finding (near-)optimal solu-
tions, not only in theoretical benchmarks but also in this engineering problem,
further underlining the robustness of GOMEA and encouraging further applica-
tions of GOMEA on other real-world optimization problems.

References

1. Thierens, D., Bosman, P.A.N.: Optimal mixing evolutionary algorithms. In: 13th
Annual Genetic and Evolutionary Computation Conference, GECCO 2011, Pro-
ceedings, Dublin, Ireland, July 12-16, 2011, ACM (2011) 617–624

2. Bosman, P.A.N., Thierens, D.: More concise and robust linkage learning by filtering
and combining linkage hierarchies. In: Genetic and Evolutionary Computation
Conference, GECCO ’13, Amsterdam, The Netherlands, July 6-10, 2013, ACM
(2013) 359–366

3. Puret, C.: Mv public distribution networks throughout the world. Technical Report
155, Merlin Gerin Group (March 1992)

4. Falaghi, H., Singh, C., Haghifam, M.R., Ramezani, M.: Dg integrated multistage
distribution system expansion planning. International Journal of Electrical Power
& Energy Systems 33(8) (2011) 1489 – 1497

5. Carrano, E.G., Soares, L.A.E., Takahashi, R.H., Saldanha, R.R., Neto, O.M.: Elec-
tric distribution network multiobjective design using a problem-specific genetic
algorithm. IEEE Transactions on Power Delivery 21(2) (2006) 995 – 1005

6. Slootweg, J.G., Van Oirsouw, P.M.: Incorporating reliability calculations in routine
network planning: Theory and practice. In: Proceedings of the 18th International
Conference and Exhibition on Electricity Distribution - CIRED 2005. (2005) 1–5

7. Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Proceedings of
the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL,
USA, June 1993, Morgan Kaufmann (1993) 38–47

8. Jaszkiewicz, A., Kominek, P.: Genetic local search with distance preserving recom-
bination operator for a vehicle routing problem. European Journal of Operational
Research 151(2) (2003) 352 – 364

9. Bosman, P.A.N., Thierens, D.: Linkage neighbors, optimal mixing and forced im-
provements in genetic algorithms. In: Genetic and Evolutionary Computation
Conference, GECCO ’12, Philadelphia, PA, USA, July 7-11, 2012, ACM (2012)
585–592

10. Grainger, J.J., Stevenson, W.D.: Power System Analysis. McGraw-Hill Education
(2003)

107



108



Preliminary studies on Biclustering of GWA: a
multiobjective approach

Khedidja Seridi1,2, Laetitia Jourdan1,2, and El-Ghazali Talbi1,2

Email: {khedidja.seridi,laetitia.jourdan}@inria.fr
talbi@lifl.fr

1 Inria Lille - Nord Europe, DOLPHIN Project-team, 59650 Villeneuve dAscq, France
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Abstract. Genome-wide association (GWA) studies aim to identify ge-
netic variations (polymorphisms) associated with diseases, and more gen-
erally, with traits. Commonly, a Single Nucleotide Polymorphism (SNP)
is considered as it is the most common form of genetic variations. In the
literature, several statistical and data mining methods have been applied
to GWA data analysis. In this article, we present a preliminary study
where we examine the possibilities of applying biclustering approaches
to detect association between SNP markers and phenotype traits. There-
fore, we propose a multiobjective model for biclustering problems in
GWA context. Furthermore, we propose an adapted heuristic and meta-
heuristic to solve it. The performance of our algorithms are assessed using
synthetic data sets.

1 Introduction

Association mapping has recently become a popular approach to discover the ge-
netic causes of many complex diseases. A genome wide association study (GWAs)
is the examination process of different genetic variants (markers) in several indi-
viduals in the purpose of detecting eventual association between the variants and
certain traits. GWAs particularly focus on associations between single-nucleotide
polymorphisms (SNPs) and traits like major diseases. Once such genetic associa-
tions are identified, researchers can use the information to promote new strategies
to detect, treat and prevent the diseases [2].

Regarding the considered phenotype’s nature, GWA studies usually deal with
two classes of data. In the first class, the data comprise the genetic informations
of all or a large fraction of the diseased subjects (cases) that appear in the con-
sidered study base and then sampling a comparable number of healthy subjects
(controls), ideally from the same study base, and potentially matched with the
cases by some socio-demographic characteristics such as race, age and gender.
Accordingly, the considered trait is a qualitative trait i.e. an individual is even a
case or a control. In the second class, the addressed phenotype is a quantitative
trait i.e. numerical values that can be ordered from highest to lowest such as
height, weight, cholesterol level, etc. The analysis of the later form of data is
known as Quantitative Trait Locus (QTL) analysis.
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By considering the entire genome, case/control data analysis is essentially
based on seeking alleles of variants that are more frequent in people with the
disease (cases). The found variant is then said to be associated with the disease.

Quantitative trait locus (QTL) analysis is a statistical method that links
two types of information i.e. phenotypic data (quantitative trait) and genotypic
data (usually markers), in an attempt to explain the genetic basis of variation
in complex traits [5]. QTL analysis allows researchers in different fields such
as agriculture, evolution, and medicine to link certain complex phenotypes to
specific regions of chromosomes. The goal of this process is to identify the action,
interaction, number, and precise location of these regions.

A QTL analysis starts by collecting phenotype and genotype data from a
number of unrelated individuals in the same way as in a case-control study.
However, in QTL studies there are no cases and no controls, just individuals
with a range of phenotype values. After that, association between the traits and
the different SNPs are detected using statistical method. The associations are
commonly formulated as predictive models.

Generally, genome wide associations studies are performed using supervised
methods such as logistic regression and discriminant analysis [1, 9], Bayesian ap-
proaches [4], etc. Commonly, the treated data comprises two main informations
for each individual: genotype informations and phenotype informations. Using a
training data set, the study mainly consists in defining a predictive model and
validate it through a test data set.

In this work we propose an unsupervised study of the GWA data with quan-
titative traits (QTL). By this study we aim to extract a subset of SNPs that
have the same alleles for a sub set of individuals sharing similar traits. Actually,
the considered data can be seen as a matrix A = (X, (Y, Z))) = {aij} where each
row i presents an individual, each column j represents either a SNP (j ∈ Y ) or
a trait (j ∈ Z) and an element aij presents the corresponding SNP’s allele (if
j ∈ Y ) or the corresponding traits value (if j ∈ Z) (see table 1). Thus, a bicluster
B = (I, (J,K)) is a sub-matrix of A = (X, (Y,Z)) where I ⊂ X, J ⊂ Y and
K ⊂ Z.

Table 1: Studied GWA data
SNPs Traits

S1 ... SA T1 ... TB

A1 a11 ... a1A a1A+1 ... a1M
... ... ... ... ... ... ...
Ai ai1 ... aiA aiA+1 .... aiM
... ... ... ... ... ... ...
AN aN1 ... aNA aNA+1 .... aNM

This paper is organized as follows. Section 2 presented the biclustering prob-
lem and a new multiobjective model for a biclustering problem applied to ana-
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lyzing GWA data sets. An adapted heuristic and metaheuristic are proposed in
section 3 to solve the proposed model. In section 4, experimental analysis of the
proposed approaches and results are presented. Finally section 5 concludes the
paper and presents perspectives.

2 Biclustering method in analyzing GWA data

2.1 Biclustering

Biclustering or co-clustering is a well-known data mining method that has been
widely applied in a broad range of domains such as marketing, psychology and
bioinformatics. It consists in extracting submatrices B = (I, J) (I ⊂ X, J ⊂ Y )
(called biclusters) with maximal size and respecting a certain coherence con-
straint. Depending on the addressed problem, biclusters of different types can
be considered. The different biclusters types and some corresponding applica-
tions are described below.

1. Constant bicluster: all the biclusters elements have the same value.
2. Bicluster with constant rows/columns: the elements of each row (column)

have the same value.
3. Bicluster with coherent values: the definition of this type of biclusters is a

generalization of constant rows/columns biclusters. There exist two different
models associated to this class of biclusters:
(a) shifting model: where each row (and each column) can be obtained by

adding an offset to an other row (column).
(b) scaling model: where each row (and each column) can be obtained by

multiplying an other row (column) by a factor.
4. Bicluster with coherent evolution: the elements of the bicluster behave sim-

ilarly (correlated) independently of their numerical values.

When formulating a biclustering problem, a similarity (dissimilarity) measure
is required in order to evaluate the extracted results. The measure is, commonly,
related to the bicluster’s type. In the case of microarray data analysis, the study
aim to extract biclusters with coherent values or evolution (gene that present
similar behavior under a sub set of conditions). Different multiobjective modeling
for biclustering problem for microarrays data have been proposed [7, 11–13, 10,
14] but none for the case of GWA data. Commonly, the proposed multiobjective
models comprise: one or more function(s) to optimize the biclusters sizes, a
function that optimizes biclusters coherences and a function to optimize the rows
variances. In all of these models, a solution represents one bicluster. Regarding
the size, most of the models maximize the ratio between the biclusters elements
number and the microarray data elements. However, as the number of rows is
generally more important than the number of columns, such functions may favor
the maximization of rows number with regard to columns number. Thereby, in
[7], authors proposed to maximize the number of rows and columns separately by
using two objective functions. Concerning biclusters coherence, all the proposed
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models consider the Mean Squared Residue MSR [3] dissimilarity measure. In
[14] the MSR value is allowed to increase as it does not exceed the threshold
δ. Regarding the rows fluctuations, all the existing models maximize the mean
row variance. In [12] the coherence and fluctuation objectives are merged in one
function by defining a function as the ratio between the MSR of the bicluster
and its mean rows variance.

The MSR measure is well adapted to identify biclusters with coherent values.
However, this measure can not be applied for GWA data as different biclusters
type is required.

2.2 Multiobjective problem modeling

In this section, we propose a multiobjective model for a biclustering method
applied to GWAs. In this study, we seek to extract biclusters with constant
columns, which correspond to a set of individuals that share SNPs presenting
the same alleles and the same traits. In order to extract such biclusters, two
objectives have to be considered: maximizing the biclusters size (find maximal
biclusters) and minimizing the average of columns variances. Actually, these two
criteria are clearly independent and conflicting. In fact, a non perfect bicluster’s
coherence (columns constance) can be improved by removing a row or a column,
i.e. by reducing its size. We can therefore deduce that the problem of bicluster-
ing in GWAs can be formulated as a multiobjective optimization problem. Thus,
the proposed model is given by :

f1(I, (J,K)) = α× |I|
|X| + β × |J||Y | + γ × |K||Z|

f2(I, (J,K)) = Avar(I, (J,K)) = 1
|I]×(|J|+|K|)

∑
j∈J ⋃

K

∑
i∈I(aij − aIj)2

Where f1 (size) has to be maximized and f2 (average variance) has to be
minimized

3 Resolution approaches

In this section we present two new approaches to solve the proposed model. The
first approach is a greedy heuristic Sbic and the second approach is a multiob-
jective metaheuristic SHMOBIibea.

3.1 Sbic heuristic

Sbic is a greedy heuristic that aims to extract relevant biclusters from GWA data
matrix and that has been designed in a similar manner as Cheng and Churchs
heuristic [3] widely used for microarray data. At each run, Sbic extracts one
bicluster from the data matrix. Sbic deletes (adds) nodes that meet with some
conditions in order to decrease the biclusters average columns variances and in-
crease its size. The main steps of Sbic are given in Algorithm 1.
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Algorithm 1 Sbic Algorithm

1:Input: Bicluster (I, (J,K)) /*which can be the whole data matrix*/
2: if(Avar(I, (J,K)) > δ)
3: MultipleNodeDeletion(I,J,K)
4: if(Avar(I, (J,K)) > δ)
5: SingleNodeDeletion (I,J,K)
6: endif
7: endif
8: MultipleNodeAddition(I,J,K)

In multiple node deletion phase, Sbic starts by removing some nodes (rows
and columns) in order to decrease the average columns variance. In columns
dimension, the variance of each column is calculated. The columns that have the
highest variance are deleted. This process will clearly decrease the whole average
variances of the columns. Similarly, the average variance can also be decreased
by applying the same process on the rows dimension. Indeed, rows with the
highest contribution on the average columns variances are deleted. After that, if
the bicluster’s average variance still higher than δ the bicluster has to undergo
the single node deletion processes. The main steps are illustrated in Algorithm 2.

Algorithm 2 Multiple node deletion

1:Input: Bicluster (I, (J,K))

2: Compute aIj , Avar and coni =
∑

j∈J (aIj−aij)
2+

∑
k∈K(aIk−aik)

2

|J|+|K| i ∈ I
3: if(coni > γ ×Avar)
4: Remove the rows i ∈ I
5: endif
6: Compute aIj , Avar and varj j ∈ J
7: if(varj > γ ×Avar)
8 Remove the column j ∈ J
9: endif
10: Compute aIk, Avar and vark k ∈ K
11: if(vark > γ ×Avar)
12: Remove the column k ∈ K
13: endif

In single node deletion, the nodes with the highest contribution on the av-
erage variance are iteratively deleted until the Avar reaches the desired value.
The main steps are illustrated in Algorithm 3.

Once the Avar of the considered bicluster reaches the desired value, the al-
gorithm tries to add other rows (columns) without increasing the Avar. For
instance all the columns (not present yet in the bicluster) that have a variance
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Algorithm 3 Single node deletion

1:Input: Bicluster (I, (J,K))
2: while(Avar(I, (J,K)) > δ)
3: Recompute coni, varj and vark.
4: Find the node d (row or column) with the highest vard (cond) .
5: Delete d.
6: endwhile

lower than or equal to Avar are added to the bicluster. Furthermore, the ex-
pected contribution of each row i (coni) in the biclusters Avar value is computed
in order to decide whether the row can be added to the bicluster or not. The
main steps are illustrated in Algorithm 4.

Algorithm 4 Multiple node addition

1:Input: Bicluster (I, (J,K))

2: Compute aIj , Avar and coni =
∑

j∈J (aIj−aij)
2+

∑
k∈K(aIk−aik)

2

|J|+|K| i /∈ I
3: if(coni ≤ Avar)
4: Add the rows i
5: endif
6: Compute aIj , Avar and varj j /∈ J
7: if(varj ≤ Avar)
8: Add the column j
9: endif
10: Compute aIk, Avar and vark k /∈ K
11: if(vark ≤ Avar)
12: Add the trait k
13: endif

Actually, Sbic is a deterministic algorithm. Thus, the same bicluster will be
extracted if the starting matrix is always the same. In order to extract several
biclusters from a data matrix (X, (Y,Z)) we propose to apply the Sbic over the
whole data matrix to extract the first bicluster. After that, Sbic can be applied
over a sub-matrix containing p% of the data’s rows and columns selected ran-
domly which will lead to discovering different bicluster at each run.

In the following section we present the main components of SHMOBIibea
metaheuristic.

3.2 SHMOBIibea

SHMOBIibea is based on HMOBIibea[15] which is a multiobjective metaheuris-
tic based on the evolutionary algorithm MOBIibea[6] and DMLS(1 · 1�)[8].

114



7

MOBI is a hybrid MOEA (Multi Objective Evolutionary Algorithm) for solv-
ing biclustering problem in the specific case of microarray data. It combines
IBEA with a local search inspired from Cheng and Churchs heuristic [3] which
is dedicated for biclustering of microarray data. MOBIibea [6] allows in the case
of microarray data to extract biclusters of good quality.

DMLS (Dominance-based Multiobjective Local Search) are a general con-
cept of multiobjective local searches using the concept of Pareto Optimality. At
each generation, DMLS selects one or more non-visited solutions (solutions with
non-explored neighborhood) from the archive and explores their neighborhoods.
After that, the solutions are marked as visited. Different variants of DMLS exists
depending on the number of selected solutions and on the exploration strategy.
In this study, we will use DMLS(1 ·1�) where one solution is randomly selected
and the exploration of its neighborhood stops when the first improving solution
is found.

In this section, we propose SHMOBIibea which is an adapted version of
HMOBIibea to SNP data. Several changes have been done to adapt HMOBIibea
to the specific case of SNPs. Therefore, we present a suitable solutions encoding
and variation operators.

Solutions encoding In SHMOBIibea, we choose to represent a bicluster as a
list compound of six parts: Each one of the first 3 parts of the chromosome is
an ordered list of indexes corresponding to either rows, columns or traits; while
parts 4 to 6 are just the cardinalities of those lists.

Table 2: Example of SNPs and traits data matrix

SNPs traits

1 2 1 12.5 0.3

0 1 2 10.75 1.2

1 0 0 10.33 -0.75

Example:
Given the data matrix presented in table 2, the string {1 3 2 3 2 2 2 1} represents
the following bicluster compound of two rows (1 and 3), two SNPs (2 and 3) and
one trait (2):

{1 3 2 3 2 2 2 1} =⇒




2 1 0.3

0 0 −0.75




Variation operators

1. Crossover:
A Single point crossover is used in the three first parts of the solution (rows
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part, columns part and traits part). Each part undergoes crossover sepa-
rately.
Let parents be chromosomes P1 = {r1 ... rn c1 ... cm t1 ...tp rnb cnb tnb} and
P2 = {r′1 ... r′l c′1 ... c′k t′1 ... t′q r′nb c′nb t′nb} where rn 6 r′l.

The crossover in the rows part is performed as follows: The crossover point
in P1 (λ1) is generated as a random integer in the range 2 6 λ1 6 rn. the
crossover point in P2 λ2 = r′j where r′j > λ1 and r′j−1 6 λ1. In the same way,
the crossover in the columns part and traits part is performed. The parts
4-6 are not involved directly in the crossover and are computed after it.

For example, consider the parents P1 and P2 presented in figure 1. Suppose
the 3rd gene index and the 2nd condition index of P1 are selected, so: λ1 = 15
and λ′1 = 5 then λ2 = 16 and λ′2 = 6, which results on the offspring C1 and
C2

4 8 4 3 1

3 3 1311385 15 18 1 2 4 5 2

1 4 1321383 15 18 1

3 3 8118155 3

4

P1

P2
C2

C1
λ1 λ

′
1

λ2 λ
′
2

1 218153 3 2 25

4 3 1

Fig. 1: An example of the crossover operator application.

2. Mutation:
We replace the mutation operator by the Sbic heuristic.

Ini$al	
  
Popula$on	
  

SMOBI	
  
Muta$on=Sbic	
   DMLS	
  

Approxima$on	
  
of	
  the	
  Pareto	
  
Op$mal	
  Set	
  

Pareto	
  	
  
Set	
  

Fig. 2: General scheme of SHMOBI

When generating random biclusters, it may happen that irrelevant rows and
columns get included inspite of their values lying far apart. Therefore, we start
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by randomly generating a population where the irrelevant rows and columns of
each bicluster are deleted using the Sbic heuristic. The resulting population is
used as the initial population for SMOBIibea. After that, the DMLS(1 · 1�) is
applied for each solution of SMOBIibea’s archive (Pareto approximation). The
main steps of SHMOBIibea are illustrated in figure 2.

4 Experiments and results

In this section we present the experimental protocol in assessing the performance
of the presented algorithms over synthetic data sets.

4.1 Data sets

In order to assess the performance of the proposed algorithms, we use syn-
thetic data sets to investigate the ability of our algorithms to extract implanted
biclusters. In this purpose, we randomly generate different data sets of size:
Set1(100, (1000, 3)) which corresponds to 100 rows 1000 SNPs columns and 3
traits columns and Set2(100, (10000, 3)) which corresponds to 100 rows 10000
SNPs columns and 3 traits columns. For each data set we implant 1 (called
Set1-1 et Set2-1) and 5 biclusters (called Set1-5 and Set2-5) with size 10 rows
50 SNPs columns. In each case, the biclusters may involve all (Set*-A) or some
of the traits (Set*-T).

4.2 Comparison criteria

In order to assess the performance of the proposed biclustering algorithm, we
use the following two ratios:

θShared =
Scb

Totsize
× 100 (1)

Where Scb is the portion size of bicluster correctly extracted and Totsize is
the total size of the implanted bicluster.

θNotShared =
Sncb

Tot
′
size

× 100 (2)

Where Sncb is the portion size of bicluster not correctly extracted and Tot
′
size

is the total size of the extracted bicluster.

The ratio θShared (resp. θNotShared) expresses the rate of shared (resp. not
shared) biclusters volume with real biclusters. In fact, when θShared (resp. θNotShared)
is equal to 100% the algorithm extracts the correct (resp. not correct) biclusters.
A perfect solution has θShared =100 % and θNotShared=0% respectively. That
is, the exact number of rows and columns of implanted biclusters.
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4.3 Parameters

Concerning the models parameters, we set α, β and γ to 0.5, 0, 0.5 respectively.
In fact, given the nature of data, SNPs columns present low variance compared
to trait columns. Hence, a big number of SNP columns will be added for each
bicluster undergoing the Sbic heuristic. Therefore, we favor biclusters having low
average variance and low SNPs columns to be selected in the search process and
this by setting β = 0.

In the other hand, all algorithms parameters have been set experimentally.
For the Sbic we set α to 1.5, δ to 0.15 and %p to 50%. The algorithm is run 20
times in order to extract 20 biclusters. The first run uses all the data matrix.
The remaining runs starts by sub-matrices where the rows and the columns are
chosen randomly. When selecting rows, more chance is given to rows not present
yet in the previously extracted biclusters.

Concerning SMOBIibea, we experimentally set the initial population size to
400. The mutation and crossover operators parameters are set to 0.2 and 0.5
respectively. The algorithm stops after a fixed time depending on the data set
size. For Set1 data sets the execution time is set to 500 s, and 700 s for Set2
data sets. The same time is allocated to SHMOBIibea algorithm where 90%
of the execution time is accorded to SMOBIibea and the remaining 10% to
DMLS(1 · 1�).

We apply our algorithms on the considered data sets and for each algorithm
we select the closest biclusters to the implanted ones. Thereafter, we calculate
θShared and θNotShared for each bicluster. For instances where several biclusters
are implanted, we report the average θShared and θNotShared of the extracted
biclusters.

4.4 Results

In this section, we compare the efficiency of Sbic, SMOBIibea and SHMOBIibea
in extracting the implanted biclusters. The comparison is done with regard to
θShared, θNotShared and the rate of found biclusters.

Table 3: Comparative results when extracting one bicluster. SMOBI stands for
SMOBIibea, SHMOBI for SHMOBIibea.

Data θShared θNotShared rate of found biclusters
Sbic SMOBI SHMOBI Sbic SMOBI SHMOBI Sbic SMOBI SHMOBI

Set1-1-A 78.6% 100 % 100% 86.6% 80.07% 24.24% 100% 100% 100%
Set2-1-A 100% 100% 100% 86.07% 86.73% 57.01% 100% 100% 100%

Set1-1-T 60.0 % 100% 100% 78.05% 92.46% 76.36% 100% 100% 100%
Set2-1-T 30% 90% 100% 81.41% 95.12% 67.12% 100% 100% 100%
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Table 4: Comparative results when extracting five biclusters. SMOBI stands
for SMOBIibea, SHMOBI for SHMOBIibea.

Data θShared θNotShared rate of found biclusters
Sbic SMOBI SHMOBI Sbic SMOBI SHMOBI Sbic SMOBI SHMOBI

Set1-5-A 50.62% 52.5% 85.92% 86.37 % 85.61 % 60.9% 60% 80% 80%
Set2-5-A 63.33% 64.16% 85.83% 92.87% 91.11% 92.26% 60% 60% 60%

Set1-5-T 41.66% 64.88% 62.61% 87.27% 82.04% 82.44% 40% 80% 80%
Set2-5-T 45% 75% 85.83% 98.21% 94.5% 93.47% 40% 40% 60%

Tables 3 and 4 present the obtained results for the different instances corre-
sponding to one and five implanted biclusters respectively. A detailled observa-
tion of the found solutions show that, in most cases, the not correctly biclusters
extracted portions are mainly composed of extra columns (SNPs).
In table 3 we can observe that all the approaches can find the implanted bi-
cluster. However, SHMOBIibea find the best results with the highest θShared

and lowest θnotShared. For instance, in the case of data Set1-1-A where all the
traits are involved in the bicluster, SHMOBIibea extracts the bicluster with
only θnotShared = 24.24%. Actually, SMOBIibea is able to find the implanted
bicluster. However, the θNotShared of the extracted bicluster is very high. This
result demonstrates the role of DMLS(1, 1�) in fine-tuning the found results.
Similarly, table 4 shows that SHMOBIibea outperforms Sbic and SMOBIibea
in finding the implanted biclusters. Actually, SHMOBIibea finds more biclusters
than the other approaches with higher θShared. However, the θNotShared value
of the biclusters extracted using all the approaches are relatively high. This can
be explained by the huge number of SNPs columns in the data set.

Concerning running times, they are of 500s for small instances (Set1-*) and
700s for large instances (Set2-*).

5 Conclusion

In this article, we have presented a preliminary study on using a biclustering
method to analyze GWA data. Actually, GWA data consists in two types of
information i.e. phenotype data (traits) and genotype data (genetic variations).
Commonly, SNPs are considered as they present the most frequent form of ge-
netic variations. The analysis of such data consists in finding eventual associa-
tions between traits and SNPs combinations. Therefore, we propose a multiob-
jective modeling for biclustering in order to extract samples (individuals) sharing
similar traits and having same alleles for a SNPs combination. The correspond-
ing biclusters are constant columns biclusters.
The extracted biclusters may bring out existing associations between the consid-
ered SNPs and traits. Moreover, the extracted biclusters may provide important
informations that can be used in further GWA studies. Given the huge num-
ber of SNPs, we propose to solve this problem using a hybrid metaheuristic
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SHMOBIibea. The efficiency of SHMOBIibea have been assessed using syn-
thetic data sets of different sizes and different implanted biclusters numbers.
Further studies will be carried out in real data sets provided by the company
Genes Diffusions3.
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Abstract. Evolutionary algorithms are capable of solving a wide range
of different optimization problems including real world ones. The latter,
however, often require a considerable amount of computational power.
Parallelization over powerful GPGPU cards is a way to tackle this prob-
lem, but this remains hard to do due to their specificities. Parallelizing
the fitness function only yields good results if it dwarfs the rest of the evo-
lutionary algorithm. Otherwise, parallelization overhead and Amdahl’s
law may ruin this effort.

In this paper, we will show how completely parallelizing an evolutionary
algorithm can help solving a large real world electrical problem with a
lightweight evaluation function without quality loss.

1 Introduction

Real world optimization problems often require a considerable amount of com-
putational power due to their high complexity. The use of GPGPU (General
Purpose Graphics Processing Units) revolutionizes evolutionary computation as
it allows to tackle a broader range of problems which, until now, were out of
reach for standard sequential evolutionary algorithms.

Many papers show the type of speedups that can be achieved on benchmark
functions as well as on real world problems (chemistry) by parallelizing the
evaluation function only on a single GPGPU card [1, 3, 4] and GPGPU specific
architecture is described in several publications [3, 4, 2].

However, this particular way to parallelize an evolutionary algorithm requires
extremely time consuming fitness functions. Problems with lightweight fitness
functions cannot take advantage of the GPGPUs computing power. In [2], the au-
thors describe a complete parallel evolutionary algorithm and present speedups
on benchmark functions showing that solving problems with lightweight evalua-
tion functions can also benefit from GPGPU parallelization.

In this paper, we propose to determine load profiles using a generational
evolutionary algorithm completely parallelized on a single GPGPU chip. The
obtained speedups are shown and the quality of the results discussed. Moreover,
the influence of parameters specific to GPGPU computing is also examined.

? The authors would like to thank the financial contribution of the “Région Alsace”

122
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2 Parallel Genetic Algorithm

2.1 Generational Evolutionary Algorithm

The specificity of a generational evolutionary algorithm is that it creates a pop-
ulation of children that is the same size as the population of parents. Then,
parents are discarded and the next generation is the children population.

A “refinement” can be added in order to implement an “elitist” generational
EA: a parent is replaced by one of his children only if the latter is better than
the parent. Otherwise, the rest of the algorithm is quite standard: the initial
population is generated randomly and children are created thanks to genetic
variation operators applied to selected parents.

This evolutionary loop is repeated until a stopping criterion is met.

2.2 Full parallelization of a generational evolutionary algorithm

Each step of the generational algorithm is parallelized on a GPGPU card: after
memory allocation of two population spaces on the device (for a parent popu-
lation and an offspring population), all cores start with an initialization stage
where an initial population is created and individuals are evaluated in parallel.

Because all these steps are nearly identical for all cores, divergence between
cores is minimal, which is essential on an SIMD/SPMD architecture.

Then, for each generation, an evolutionary kernel is launched from the host.
It assigns as many threads as there are individuals in the parent population and
it dispatches the threads among the core blocks. The evolutionary kernel selects
2 parents from the parent population and performs a crossover between them to
create an offspring that is stored in the offspring population space on the device.
The genome of the offspring is then mutated and evaluated.

Finally, the freshly created offspring is compared to the parent with the same
thread ID. If the offspring is better, it replaces the parent. If not, the parent is
kept for the next generation.

Meanwhile, the host waits for all the threads on the device to synchronize,
in order to launch the evolution kernel for the next generation.

The selection of the parents for reproduction is performed through a tourna-
ment selection operator.

2.3 Random number generation: Host API vs. Device API

Pseudo random number sequences can be generated in two different ways using
the CURAND library [5]: by using the host API or by using the device API.

In the host API (Host RBG), random numbers are produced by generators.
The production of numbers requires the creation of a generator and memory al-
location on the device. Then, random numbers are generated in parallel directly
on the device, ready to be used by subsequent kernels. To maximize the effi-
ciency of the generator, a great amount of random numbers should be generated
simultaneously.

123



Title Suppressed Due to Excessive Length 3

In the device API (Dev RNG), each thread has its own generator and its own
seed. The states of the generators, after being initialized, are stored in device
memory. The pseudo random numbers are then generated directly on the device.
The advantage of this API is that the generation function can be called from
device functions while in the host API, random number are generated through
a specific kernel beforehand. While being faster than the host API, the device
API provides less guarantees about the mathematical properties of the generated
sequences.

3 Determination of Load Profiles

Energy distribution companies such as Électricité de Strasbourg Réseaux (ESR)
struggle to obtain very precise estimations of the energy demand of large scale
as well as medium scale electric networks. They have access to their power load
profiles that strive to approximate the behavior of specific end user classes, but
these profiles are often not very precise as they do not take into account factors
such as the presence of electrical heating or the type of housing. Ignoring these
factors results in inaccurate estimations of load curves for areas very sensitive
to temperature changes. For instance branches of the electrical network that
distribute energy mostly to end users with electrical heating are very sensitive
to temperature drops in the winter time.

3.1 Presentation of the Case Study

The determination of load profiles is a very prolific area of research [6–12]. There
are a multitude of different methods to obtain profiles of good quality. Neverthe-
less, most of these methods rely on time series of end user load measurements
obtained through measurement campaigns. These load measurements time se-
ries are very expensive and time consuming to acquire and hence not always
available. However, a paper of 2003 [13] shows that it is possible to obtain high
quality load profiles without any prior knowledge of the electrical network by
considering the load profile determination problem as a blind source separation
problem. The feasibility of the method is proven on artificial datasets only.

3.2 General setup and Methodology

Available information The information used in the case of this real world
problem is provided by Électricité de Strasbourg Réseaux. The information in-
cludes the topology of the electric network maintained by ÉSR as well as load
measurements performed at different levels of the network:

1. At the level of the 20kV HV (high voltage) feeders: average load measure-
ments performed at a 10 minutes step

2. At the LV (low voltage) end user level: biannual energy meter readings from
which an average load can be calculated
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For the purpose of this study, the end users are separated into 8 different
classes according to the following criteria:

– Usage: domestic or professional

– Type of housing: apartments or single houses

– Presence of electrical heating: with or without

– Tariff: single rate or double rate

The presence of electrical heating was determined by machine learning tech-
niques applied on end user energy consumption history. The double rate tariff
represents the peak/offpeak tariff.

Methodology The method applied to determine the new load profiles is similar
to the method presented in [13]. We assume that the load curve of a 20kV feeder
d is equal to the weighted sum of the different profiled load curves of the end
users fed by d. The determination of the load profiles is hence very similar to
a blind source separation problem [14]: separate a set of source signals (the set
of profiles) from a set a mixed signals (the set of 20kV feeder load curves). The
problem can be summed up by the following equation:



W1,1 · · · W1,8

...
. . .

...
Wm,1 · · ·Wm,8


×



P1

...
P8


+



ε1
...
εm


 =



p1
...
pm


 (1a)

Wm,8 × P8,1 + εm,1 = pm,1 (1b)

where:
•Wm,8 the weight matrix: 8 end user average load for m 20kV feeders;
• P8,1 the profile matrix for the 8 end user classes (set of source signals);
• εm,1 the residue matrix for m 20kV feeders;
• pm,1 the power matrix for m 20kV feeders (set of mixed signals);
The residue matrix is necessary as the data used contains a certain amount

of noise and error caused by:

– Changes in the network topology (load transfer)

– Measurement device failures

– Power loss

– Other unknown elements

The consequence of these factors is a high amount of residue in εm,1. There-
fore, it is not possible to determine the linear independence of the system, a
prerequisite to a classic blind source separation. The linear independence of the
system was therefore assumed for the rest of this study. A genetic algorithm
(GA) was chosen to solve the blind source separation, more than adequate to
tackle this class of problems [15, 16], regardless of the amount of error in the
data [17].
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3.3 Engine of the genetic algorithm

Fitness function The fitness function is a mix of two distinct sub-functions:
a function to compare the estimated load curves with the measured load curves
and a function to measure the smoothness of the load profiles.

The following equation calculates for a single 20kV feeder c the difference
between the estimated load curve constructed with the profiles from the indi-
vidual’s genotype and the measured load curve:

Fc =

t1∑

t0

|p(t)− (W1P1(t) + . . .+WnPn(t))|

p(t)
(2)

where:
• p(t) load of the feeder at time t (in kW);
•Wn average power of end users with profile n (in kW);
• Pn(t) value of profile n at time t (no unit);
The second equation determines the smoothness of the profiles:

Dist =

n∑

i=1

MAX((d−Di), 0) (3)

where:
• n number of profiles (8 in the case of this study);
• d overall average distance between two half-hour points in a profiles;
• Di average distance between two half-hour points of profile i;
The total fitness F is determined over the complete set of m measured load

curves by combining the two equations presented above:

F =

m∑

c=1

Fc +
n∑

i=1

MAX((d−Di), 0)

n+ 1
(4)

where:
• m number of measured load curves in the mixed signals set;
The goal of the genetic algorithm is to find the individual i.e. the set of

profiles that minimizes the fitness value F that is very simple to compute (only
simple additions and a couple of divisions), making for a very light evaluation
function.

Individual genome An individual represents a set of 8 profiles for a specific
day of a given month. Each profile is represented as an array of 48 floating points
(one for every half-hour in the day). Hence, the genotype of an individual is a
48× 8 long float point array.

Engine of the original genetic algorithm High quality power load pro-
files (reference profiles) have already been found using an elitist genetic algorithm
generated with EASEA [18]. Nevertheless, the determination of load profiles for
a single day of the year requires about 13 minutes. The determination of load
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profiles for a complete year therefore requires about 79 hours! The latter are not
static. They are bound to evolve with end user energy consumption habits and
will require regular redefinitions. Accelerating their creation would enhance the
current process.

4 Results

The relevance and the quality of the load profiles found by the GA have been
presented in another paper [18] and will not be discussed in this paper. Instead,
the different speedups that can be achieved by parallelizing the problem on a
single GPGPU card are observed and the benefit of using GPGPUs for this par-
ticular problem will be presented. All the values exposed in this section represent
an average over 30 runs.

The experiments were performed on:

– 1 core of an Intel Core i7 CPU running at 3.33GHz

– 512 cores of one nVidia GTX 590 processor.

The processors of an nVidia GTX 590 have 16 multi processors with 32 cuda
cores. The maximum number of thread per block is 1024 and the maximum
number of registers per block is 32768. Each processor of a GTX 590 has access
to 1,49 GB of global memory.

The fitness function presented above requires 42 registers per thread. There-
fore, the maximum number of threads per block is 780 as those threads take
32760 of the 32768 registers of the block. For security reasons, the maximum
number of threads per block for this function was capped at 512. Maximum
occupancy for one card is reached for 16× 512 = 8192 threads.

The GA manages different data along with set of feeder load curves:

1. 2 populations: a parent population and an offspring population (2×popSize×
8 times48 values)

2. 1 vector with the mutation probability of each gene of every individual (vec-
tor size: popSize× 8× 48)

3. 1 vector with the mutation values of each gene of every individual (vector
size: popSize× 8× 48)

4. 1 vector with the barycentric crossover weight of every individual (vector
size: popSize)

5. 1 vector with the fitness value of every individual (vector size: popSize)

The total number of real number values required by the GA is popSize×2306.
It is important to note that the arrays with mutation probabilities, mutation
values and crossover weights are only used in the case Host RNG.

Table 1 shows that for population sizes above 131072, the GPGPU card is out
of memory. The maximum population size that can be used for this particular
problem is of 131072 individuals.
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Table 1: Memory in GB required by the parallel GA on GPGPU with regards to
population size. Total global memory on a single GTX590 card: 1,49GB

Population size Total amount of memory
required by the GA (in GB)

64 0,0004
1024 0,007
8192 0,05
32768 0,23
131072 0,93
262144 1,87

Fig. 1: Speedup for CpuEzElGa vs. GpuEzElGa

Terminology In order to make the following section more understandable,
the different algorithms compared during the determination of speedups are
described and given a specific name used in the following section:

1. CpuEzElGa: Elitist (El) genetic algorithm (Ga) generated with EASEA
(Ez ) running on CPU (Cpu)

2. GpuEzElGa: Elitist (El) genetic algorithm (Ga) generated with EASEA
(Ez ) running on GPU (Gpu)

3. GpuGenGaWiPt: Generational (Gen) genetic algorithm (Ga) with gen-
erational population transfer (WiPt) running on GPU (Gpu)

4. GpuGenGaWoPt: Generational (Gen) genetic algorithm (Ga) without
generational population transfer (WoPt) running on GPU (Gpu)

In some cases, a generational information transfer is performed from the GPU
to the CPU. This information transfer is performed in order to compute and dis-
play statistics relative to the population convergence such as best fitness, average
fitness etc. . . While this information transfer is not relevant when the algorithm
is already tuned, it is vital while during engine parameters optimization. Hence
it is only fair to compare the speedups for both configurations.

4.1 Speedups

Figure 1 shows the speedup obtained by using the automatic EASEA GPU par-
allelization feature: only the fitness function is parallelized on a single GPGPU
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card. Maximum “speedup” of 0.6 is achieved for population sizes starting at
512 individuals. The values presented in figure 1 are hardly speedups and can
be referred to as “speeddowns”. As a matter of fact, figure 1 shows that the
genetic algorithm running on the CPU is faster than the GPU version generated
with EASEA. Figure 1 shows that the fitness function of this real world problem
is not intense enough computationally time-wise in order to benefit from GPU
parallelization.

No comparisons have been performed for population sizes greater than 4096
individuals due to the ridiculously enormous computation times.

Fig. 2: Speedup for CpuEzElGa vs. GpuGenGaWiPt (dashed curve) and
CpuEzElGa vs. GpuGenGaWoPt (lined curve)

Figure 2 shows the speedup obtained by parallelizing the generational ge-
netic algorithm completely on the GPGPU card. The dashed curve shows the
speedup obtained when a generational population transfer is performed, the lined
curve shows the speedup obtained when no generational population transfer is
performed.

The same figure shows that a speedup of ×160 is achieved for GpuGenGa-
WoPt whereas a speedup of ”only” ×90 is achieved for GpuGenGaWiPt. A
speedup drop can be noticed for population sizes greater than 8192 individuals.
These drops are due to the GPU card having reached maximum occupancy as
well as to the rising computation time for random number generation/transfer.

4.2 Convergence comparison

The second aspect to be observed is the differences in convergence for different
configurations.

In order to use the GPGPU to speedup the profile determination problem,
the engine of the genetic algorithm needs to be transformed from an elitist engine
to a generational engine. This modification has an impact on the convergence
and it is of the upmost importance to make sure that this impact is minimal.
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Fig. 3: Convergence comparison: elitist GA running on CPU (dotted curve), genera-
tional GA running on CPU (dashed curve) and generational GA running on GPU
(lined curve).

Figure 3 shows the convergence of best individual fitness for the elitist GA
running on CPU (dotted curve), the generational GA running on CPU (dashed
curve) and the generational GA running on GPU (lined curve). Figure 3 demon-
strates that the change of evolutionary engine does not impact the way the GA
converges. Moreover, the transfer of the GA from the CPU to the GPU does
not seem to have a significant impact on the convergence either. Nevertheless,
the impact of the visible difference in the final fitness values on the shape of the
resulting profiles has to be quantified.

4.3 Influence of different factors

When using GPGPU programming, several features can be tweaked in order
to improve speedup performances as well as result precision. Speedups can be
improved by using Dev RNG. Result quality can be improved by using double
precision, which, however, restricts the maximum population size.

The left chart of figure 4 shows the influence of Host RNG (lined curve)
over Dev RNG (dashed curve). This chart clearly reveals that the GA using
Host RNG reaches a far better final fitness value compared to the GA using
Dev RNG. That result is not surprising considering that Dev RNG provides less
guarantees about he mathematical properties of the generated sequences. In the
case of this particular problem, only Host RNG should be used.

The right chart of figure 4 shows the influence of double precision (dashed
curve) over single precision (lined curve). Single precision reaches better results
than double precision.

4.4 Profile quality comparison

For real world problems, the quality of the results can be more important than
the time required to obtain it. In this case, it is very important to make sure
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Influence of the host random num-
ber generation API (lined curve) and
the device random number generation
API (dashed curve) on the convergence
of the GA.

Influence of double precision
(dashed curve) over single precision
(lined curve) on the convergence of the
GA.

Fig. 4: Influence of different factors on the convergence of the GA.

that the profiles obtained with the different GA configurations are equivalent to
the reference profiles found by CpuEzElGa.

Figure 5 presents a bar chart comparing the correlation coefficients between
the profiles found by CpuEzElGa and the profiles found by:

– GpuGenGa with a speedup optimal population size of 8192 individuals using
Host RNG (in black)

– GpuGenGa with the original optimal population size of 750 individuals using
Host RNG (in dark gray)

– GpuGenGa with the original optimal population size of 750 individuals using
Dev RNG (in light gray)

Figure 5 shows that the profiles found with the parallel GAs using Host RNG
have close to 1 correlation coefficients. On the other hand, the parallel GA using
Dev RNG performs very badly as the profiles have an average correlation coef-
ficient of 0.5! Figure 5 also reveals that using a greater population size does not
impact the quality of the results.

4.5 Discussion

Several conclusions can be drawn from the results presented above. Maximum
speedup of ×160 is achieved for this particular problem with a population size of
8192. However, the population size of the original elitist genetic algorithm is only
of 750 individuals and figure 5 shows that the use of a greater population size
does not improve result quality. Therefore, if the time required by the original
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Fig. 5: Correlation coefficient between the reference profiles obtained with the elitist ge-
netic algorithm on CPU and the profiles obtained through different GA configurations
running on GPU.

GA is compared to the time required by the generational GA running on GPU
with a population size of 8192, a speedup of ×14 is achieved. Figure 2 shows
that for a population size of 750 individuals, a speedup of ×34 is achieved. It
is therefore more interesting to conserve the original population size even if it
means not using the GPU card to its full capacity.

The profile determination for a whole year which requires 79 hours on CPU
only takes about 2 hours when it is ported on GPGPU!

5 Conclusion

This paper shows how a genetic algorithm completely parallelized on GPGPU
can contribute in solving efficiently and little computation time a complex prob-
lem such as power load profile determination. The speedups presented in this
paper range between ×90 and ×160, reducing the computation time from 79
hours to a little more than 2 hours. Different aspects of GPGPU computation
have been tested and their influence on GA convergence as well as profile quality
examined.

The parallel genetic algorithm presented in this paper has not yet been inte-
grated into the EASEA language. The integration has to be performed in order
to allow people without GPGPU programming knowledge to take advantage of
computation power of these cards to solve their optimization problem.
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[1] Baumes L., Krüger F., Jimenez S., Collet P., Corma A.: Boosting theoretical
zeolitic framework generation for the determination of new materials structures
using GPU programing, Phys. Chem. Chem. Phys. 4674–4678 Vol. 13 (2011)

[2] Maitre, O., Lachiche, N., Collet, P.: Two Ports of a Full Evolutionary Algorithm
onto GPGPU Artificial Evolution 2011, Springer LNCS, Vol. 7401 97–108

[3] Maitre, O., Baumes, L., Lachiche, N., Corma, A., Collet, P.: Coarse Grain Par-
allelization of Evolutionary Algorithms on GPGPU Cards with EASEA 11th
Annual Conference on Genetic and Evolutionary Computation (GECCO0́9),
1403–1410, Franz Rothlauf (Eds), ACM, (2009)

[4] Maitre, O., Lachiche, N., Clauss, P., Baumes, L., Corma, A., Collet, P.: Efficient
Parallel Implementation of Evolutionary Algorithms on GPGPU cards Europar
2009, 974–985, Springer, LNCS, Vol. 5704 (2009)

[5] cora.gridlab.univie.ac.at/docs/CUDA/CURAND Library.pdf
[6] Jardini, J.A., Tahan, C.M., Gouvea, M.R., Ahn, S.U., Figueiredo, F.M.: Daily

Load Profiles for Residential, Commercial and Industrial Low Voltage Con-
sumers. IEEE Trans. on Power Delivery Vol.15 No.1 (2000) 375–380

[7] Gerbec, d., Gasperic, S., Smon, I., Gubina, F.: Allocation of the Load Profiles
to Consumers Using Probabilistic Neural Networks. IEEE Trans. on Power
Systems Vol.20 No.2 (May 2005) 548–555

[8] Chen, C.C., Wu, T.H., Lee, C.C., Tzeng, Y.M.: The Application of Load Models
of Electric Appliances to Distribution System Analysis. IEEE Trans. on Power
Systems Vol.10 No.3 (August 1995) 1376–1382

[9] Chen, C.S., Kang, M.S., Hwang, J.C., Huang, C.W: Temperature Effect to
Distribution System Load Profiles and Feeder Losses. IEEE Trans. on Power
Systems Vol.16 No.4 (November 2001) 916–921

[10] Espinoza, M., Joye, C., Belmans, R., De Moor, B.: Short-Term Load Forecast-
ing, Profile Identification, and Customer Segmentation. IEEE Trans. on Power
Systems Vol.20 No.3 (August 2005) 1622–1630

[11] Figueiredo, V., Rodriguez, F., Vale, Z., Gouveia, J.B.: An Electric Energy
Consumer Characterization Framework Based on Data Mining Techniques.
IEEE Trans. on Power Systems Vol.20 No.2 (May 2005) 596–602

[12] Capasso, A., Grattieri, W., Lamedica, R., Prudenzi, A.: A Bottom-Up Ap-
proach to Residential Load Modeling. IEEE Trans. on Power Systems Vol.9
No.2 (May 1994) 957–964

[13] Liao, H., Niebur, D.: Load Profile Estimation in Electric Transmission Net-
works Using Independent Component Analysis. IEEE Trans. on Power Systems
Vol.18 No.2 (May 2003) 707–715

[14] Acharyya, R.: A New Approach for Blind Source Separation of Convolutive
Sources. VDM Verlag, (2008)

[15] Rojas, I., Clemente, R.M., Puntonet, C.G.: Nonlinear Blind Source Separa-
tion Using Genetic Algorithms. Independent Component Analysis and Signal
Separation (2001)

[16] Shyr, W.J.: The Hybrid Genetic Algorithm for Blind Signal Separation. Neural
Information Processing (2006) 954–963

[17] Katou, M., Arakawa, K.: Blind Source Separation in Noisy and Reverberating
Environment Using Genetic Algorithm. Proceeding of 2009 APSIPA Annual
Summit and Conference (2009)
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Abstract. In this paper we present a study based on an evolutionary
framework to explore what would be a reasonable compromise between
interaction and automated optimisation in finding possible solutions for
a complex problem, namely the learning of Bayesian network structures,
an NP-hard problem where user knowledge can be crucial to distinguish
among solutions of equal fitness but very different physical meaning.
Even though several classes of complex problems can be effectively tack-
led with Evolutionary Computation, most possess qualities that are dif-
ficult to directly encode in the fitness function or in the individual’s
genotype description. Expert knowledge can sometimes be used to inte-
grate the missing information, but new challenges arise when searching
for the best way to access it: full human interaction can lead to the
well-known problem of user-fatigue, while a completely automated evo-
lutionary process can miss important contributions by the expert. For
our study, we developed a GUI-based prototype application that lets
an expert user guide the evolution of a network by alternating between
fully-interactive and completely automatic steps. Preliminary user tests
were able to show that despite still requiring some improvements with
regards to its efficiency, the proposed approach indeed achieves its goal
of delivering satisfying results for an expert user.

Keywords: Interaction, Memetic Algorithms, Evolutionary Algorithms,
Local Optimisation, Bayesian Networks, Model Learning

1 Introduction

Efficiently using algorithmic solvers to address real world problems initially re-
quires dealing with the difficult issue of designing an adequate optimisation
landscape - that is, defining the search space and the function to be optimized.
The Bayesian Network Structure Learning (BNSL) problem is a good example
of a complex optimisation task in which expert knowledge is of crucial impor-
tance in the formulation of the problem, being as essential as the availability
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of a large enough experimental dataset. By its very nature, BNSL is also at
least bi-objective: its aim is to optimize the tailoring of a model to the data
while keeping its complexity low. The balance between the multiple objectives
has to be decided by an expert user, either a priori or a posteriori, depending
on whether a mono or multi-objective solver is used. Other high level design
choices made by the expert condition the type of model that is searched (i.e.,
the definition of the search space), and the constraints that are applied to the
search.

Lack of experimental data is a rather common issue in real world instances
of the BNSL problem, making the optimisation task very multi-modal or even
badly conditioned. Although previous work has proved that EA approaches tend
to be more robust to data sparseness than other learning algorithms [30], an
efficient and versatile way of collecting expert knowledge would still represent
an important progress. Interaction with the expert, for instance, can be useful
to disambiguate solutions considered as equivalent given the available dataset.
How to best access an expert’s knowledge, however, is still an open issue: asking
a human user for input at a high frequency may lead to the well-known problem
of user fatigue; not asking frequently enough might result in too little feedback.
In this paper we present a study that constitutes a first step into reaching this
balance between interaction and automation.

For our study we developed a prototype application that allows an expert
user to guide the evolution of a Bayesian network. The prototype works by al-
ternating steps of interactive visualisation with fully automated evolution. The
original network and evolved solutions are always displayed to the user as inter-
active node-link diagrams through which constraints can be added so that the
function to be optimized can be refined. Our approach is related to humanized
computation as defined by [1] (EvoINTERACTION Workshops) i.e., “systems
where human and computational intelligence cooperate.”

The use of interactive evolution (IEAs, or IEC) algorithms is the most com-
mon approach for humanized computation. This strategy considers the user as
the provider of a fitness function (or as a part of it) inside an evolutionary loop
and has been applied to various domains, such as art, industrial design, the tun-
ing of ear implants, and data retrieval [28, 26]. There are, however, different ways
to interlace human interaction and optimization computations that may be as
simple as what we study in this paper (i.e., an iterative scheme) or as sophis-
ticated as collaborative learning and problem solving using Serious Games or
Crowd Sourcing [4, 31, 24]. An interesting feature of theses latter approaches is
that they consider various tools to deal with what they call “user engagement,”
which may represent a new source of inspiration to address the well-known “user
fatigue” issue of IEAs.

This paper is organized as follows. Section 2 gives a short background on
Bayesian Networks (BN) and how they can be visualized, as well as on meth-
ods used for dealing with the BNSL problem. Section 3 details our proposed
approach. Experimental results are presented in section 4 and an analysis is de-
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veloped in section 5. Finally, our conclusions and some possible directions for
future research are discussed in section 6.

2 Background

2.1 Bayesian Networks

Formally, a Bayesian network is a directed acyclic graph (DAG) whose nodes
represent variables, and whose arcs encode conditional dependencies between
the variables. This graph is called the structure of the network and the nodes
containing probabilistic information are called the parameters of the network.
Figure 1 reports an example of a Bayesian network.

Node Parents Probabilities 

A P(A=a1) = 0.99 
P(A=a2) = 0.01 

B A,E P(B=b1|A=a1,E=e1) = 0.5 
P(B=b2|A=a1,E=e1) = 0.5 
P(B=b1|A=a1,E=e2) = 0.1 
P(B=b2|A=a1,E=e2) = 0.9 
P(B=b1|A=a2,E=e1) = 0.4 
P(B=b2|A=a2,E=e1) = 0.6 
P(B=b1|A=a2,E=e2) = 0.2 
P(B=b2|A=a2,E=e2) = 0.8 

Node Parents Probabilities 

C B P(C=c1|B=b1) = 0.3 
P(C=c2|B=b1) = 0.7 
P(C=c1|B=b2) = 0.5 
P(C=c2|B=b2) = 0.5 

D A P(D=d1|A=a1) = 0.8 
P(D=d2|A=a1) = 0.2 
P(D=d1|A=a2) = 0.7 
P(D=d2|A=a2) = 0.3 

E P(A=e1) = 0.75 
P(A=e2) = 0.25 

Fig. 1. Left, a directed acyclic graph. Right, the parameters it is associated with.
Together they form a Bayesian network BN whose joint probability distribution is
P (BN) = P (A)P (B|A,E)P (C|B)P (D|A)P (E).

The set of parent nodes of a node Xi is denoted by pa(Xi). In a Bayesian
network, the joint probability distribution of the node values can be written as
the product of the local probability distribution of each node and its parents:

P (X1, X2, ..., Xn) =
n∏

i=1

P (Xi|pa(Xi))

2.2 The structure learning problem

Learning the optimal structure of a Bayesian network starting from a dataset
is proven to be an NP-hard problem [7]. Even obtaining good approximations
is extremely difficult, since compromises between the representativeness of the
model and its complexity must be found. The algorithmic approaches devised
to solve this problem can be divided into two main branches: heuristic algo-
rithms (which often rely upon statistical considerations on the learning set) and
score-and-search meta-heuristics. Recently, hybrid techniques have been shown
to produce promising results.

Heuristic algorithms: The machine learning community features several
state-of-the-art heuristics algorithms to build Bayesian network structures from
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data. Some of them rely upon the evaluation of conditional independence be-
tween variables, while others are similar to score-and-search approaches, only
performed in a local area of the solutions’ space, determined through heuristic
considerations. The main strength of these techniques is their ability of return-
ing high-quality results in a time which is negligible when compared to meta-
heuristics.

Two of the best algorithms in this category are Greedy Thick Thinning
(GTT) [5] and Bayesian Search (BS) [9]. Although a detailed description of
the two procedures is outside the scope of this work, it is important to highlight
the most relevant difference between them. While GTT is fully deterministic,
always returning the same solution for the same input, BS is stochastic, starting
from different random positions at each execution. Both GTT and BS imple-
mentations can be found in commercial products such as GeNie/SMILE [12].

Evolutionary approaches: Among score-and-search meta-heuristics, evo-
lutionary algorithms are prominently featured. Several attempts to tackle the
problem have been tested, ranging from evolutionary programming [33], to co-
operative co-evolution [2] and island models [25]. Interestingly, some of the evolu-
tionary approaches to Bayesian network structure learning in the literature show
features of memetic algorithms, hinting that injecting expert knowledge might
be necessary to obtain good results on such a complex problem. For example,
[33] employs a knowledge-guided mutation that performs a local search to find
the most interesting arc to add or remove. In [11], a local search is used to select
the best way to break a loop in a non-valid individual. The K2GA algorithm
[20], in its turn, exploits a genetic algorithm to navigate the space of possible
node orderings, and then runs the greedy local optimisation K2, which quickly
converges on good structures starting from a given sorting of the variables in
the problem.

Memetic algorithms: Memetic algorithms are “population-based meta-heuristics
composed of an evolutionary framework and a set of local search algorithms which
are activated within the generation cycle of the external framework” [18]. First
presented in [23], they gained increasing popularity in the last few years [21].
What makes these stochastic optimisation techniques attractive is their ability
to quickly find high-quality results while still maintaining the exploration po-
tential of a classic evolutionary algorithm. Their effectiveness has been proven
in several real-world problems [15] [22] and there have been initial attempts to
employ them in the structure learning problem. In particular, in [29] the authors
combine the exploratory power of an evolutionary algorithm with the efficient
exploitation of GTT, obtaining Bayesian network structures with higher repre-
sentation and lower complexity than results produced by the most prominently
featured heuristic methods.

2.3 Visualizing Bayesian Networks

It has been shown that efficient interactions in humanized computation requires
efficient visualisations [19]. Current visualisation tools for BN rely on classical
graph layouts for the qualitative part of the BN, i.e., its graphical structure.
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Fig. 2. Overview of the prototype’s interface in use: a network being displayed and pre-
pared for evolution. Node properties panel: The table shows the parameters or, in
other words, the conditional probabilities for the corresponding variable. Edge prop-
erties panel: The arcs can be set as forced or forbidden before running the structure
learning algorithms. Network properties panel: The log-likelihood expresses how
well the current network expresses the dataset, while the dimension is a measure of
the network’s complexity. History panel: Every time a structure learning algorithm
is run, a new network is added to the history.

Still, a difficult issue remains regarding the quantitative part of the BN: the
conditional probability set associated to each node of the graph. It has been
noted in 2005 that ”the work performed on causal relation visualisation has been
surprisingly low” [6]. Various solutions have been proposed like in [10], BayViz
[6, 10] SMILE and GeNIe [13], or VisualBayes [32]. To our knowledge, the most
advanced and versatile visualisation interface for dealing with structure learning
is GeNIe, a development environment for building graphical decision-theoretic
models from the Decision Systems Laboratory of the University of Pittsburgh:
it has gained a notoriety in teaching, research and industry.

None of these tools, however, has really been designed to run a smooth in-
teraction scheme and to easily allow users to revisit the learning stage after
the visualisation. Our approach explores new features for visualisation-based
interactive structure learning strategies. For the moment, it does not address
quantitative visualisation, though that may be considered in the future.
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3 Proposed Approach

Automated structure learning processes usually score candidate networks with
specific metrics: however, networks with similar scores might be extremely differ-
ent from a user’s point of view. In order to take into account human expertise, we
propose an interactive evolutionary tool for Bayesian network structure learning.

To perform our study a prototype application has been developed through
which users can control the generation and evolution of the Bayesian network.
This application consists of a GUI (Figure 2) that serves as a hub for net-
work manipulation and interactive evolution. The GUI consists of the menu,
the workspace, a node/edge properties panel, a network properties panel, and a
history panel.

To start the process from scratch, users can load a CSV file containing a
training set by selecting the appropriate option from the prototype’s File menu.
Alternatively, users can load an already computed network from an XMLBIF
file by choosing the corresponding option from the same menu. Once a network
is loaded, it will be displayed as a node-link diagram on the workspace, with
nodes represented as labelled circles and edges as directed line segments. When
a network is first loaded, nodes are arranged in a circular layout. Other layout
options can be found in the Layout menu, and include the Gürsoy-Atun [17],
Fruchterman-Reingold [16], and Sugiyama [27] layouts, see figure 3.

Fig. 3. Sample of layout options, from left to right: circular, Gürsoy-Atun,
Fruchterman-Reingold and Sugiyama layouts of the Alarm BN benchmark.

Navigation in the workspace consists of zooming and panning. Users can
zoom in or out by spinning the mouse wheel and pan using the scrollbars that
appear when the visualisation is too big to fit in the workspace’s view. Panning
can also be performed with the drag tool, accessible from the Edit menu. When
this tool is active, panning can be performed by clicking and dragging anywhere
on the workspace.

By default, when a network is first loaded the selection tool is active. This
tool allows users to select nodes and edges and move them around the workspace
by clicking and dragging. Multiple objects can be selected by clicking on each
object separately while the Ctrl key is pressed or by clicking on an empty area of
the workspace and dragging so that the shown selected area intersects or covers
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the desired objects. Clicking and dragging on any selected object will move all
others along with it.

Users can connect nodes to one another with the Create Edge tool, available
from the Graph menu. Once this tool is active, the new edge can be created
by first clicking on the desired origin node and subsequently on the target one.
While the new edge is being created, a dashed line is shown from the origin node
to the current cursor position to help users keep track of the operation. If after
choosing the origin node they click on empty space instead of on another node,
the edge creation is cancelled. To delete an edge from the graph, after selecting
it they can either press the Delete key on the keyboard or select Remove Edge
from the Graph menu. This operation is irreversible so a dialogue will pop up
to ask for their confirmation.

When an object is selected in the workspace, its properties are displayed in
the properties panel (node properties and edge properties panels of Figure 2).
Node properties include its name and numeric id in the graph as well as its
probability table (if a training set has been loaded) and a list of other properties
that might be present in the network’s corresponding file. Edge properties show
the id and name of an edge’s origin and target nodes and helps users prepare the
network for evolution of the network by setting the edge as forced or forbidden, or
leaving it as a normal edge. Forced edges will appear in green in the workspace,
while forbidden edges will appear in red.

From the moment the network is loaded, its properties are displayed in the
network properties panel (Figure 2). These properties include the amount of
nodes and edges, the network’s log likelihood and dimension, and other proper-
ties loaded from the network file, all updated every time there is a change in the
graph. If the network was generated by evolving another, the parent network
and the method used to generate it will also be shown. The training set that will
be used to evolve the network can also be set from within this panel through
the corresponding field’s Choose button, which lets users load a CSV file. Note
that the training set must be compatible with the network (i.e., have the exact
same nodes).

If the current network has been created directly from a training set or one
has been loaded in the network properties panel, it can be evolved into new
networks. This is done through the learning algorithms accessible through the
Learning menu. Users can choose among three techniques: Greedy Thick Thin-
ning, Bayesian Search and µGP. When one is chosen, its corresponding config-
uration dialog is shown, where parameters for the evolution can be set and, for
the case of µGP, stop conditions defined.

After evolution, the workspace is updated to display the new network. The
new network is also added to the list in the history panel (Figure 2). In this
panel, the current network is always shown highlighted. Users can change the
currently displayed network by clicking on its name and export it to an XMLBIF
file through the Export Selected Network button. The latest layout is always kept
when alternating among the different networks.

141



The prototype application was implemented in C++ using the Qt 4.8.2
framework and the Boost (http://www.boost.org) and OGDF [8] libraries. Fig-
ure 2 shows the prototype in use. A couple of networks have been generated
using the learning algorithms, with the one displayed on the workspace having
been created with Greedy Thick Thinning. The user has set some of the edges to
forced (MINVOLSET to VENTMACH and MINVOLSET to DISCONNECT)
and forbidden (INTUBATION to SHUNT) and a node has been selected (DIS-
CONNECT).

4 Experimental Setup

In order to validate the proposed approach, test runs were performed in coop-
eration with two experts on food processing and agriculture. Agri-food research
lines exploit Bayesian network models to represent complex industrial processes
for food production.

The first expert analysed a dataset on cheese ripening [3]. It consists of 27
variables evaluating different properties of the cheese from the point of view of
the producer. Of these variables, 7 are qualitative while the other 20 refer to
chemical processes. A candidate solution for the dataset is reported in Figure 4.

Fig. 4. A sample configuration of the complete network used in the test trial. The
Sugyiama layout is preferred by the expert to visualize the structure.

The second expert analysed a dataset on biscuit baking. It consists of 10
variables describing both properties of the biscuits, such as weight and colour,
and controlling variables of the process, such as heat in the top and bottom parts
of the oven.
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After a preliminary run, the setup of the memetic algorithm is changed in
order to better fit the user’s preferences. In particular, since the prototype is
not optimized with regards to the running speed of the evolutionary process, the
population size is reduced in comparison to the parameters reported in [30] so
that a compromise can be reached between the quality of the results and time
the user needs to wait before seeing the outcome.

5 Analysis and Perspectives

The expert users’ response to the prototype’s graphical user interface was gen-
erally positive. The ease of arc manipulation, which made it possible to imme-
diately see the improvements in the network’s representativeness and/or dimen-
sion, was well received. Also commended were the automatic layout algorithms,
which were extensively used when considering the entire network. The possibil-
ity of rapidly browsing through the history of networks was used thoroughly by
the experts and found to be advantageous. They felt, however, that comparing
candidates would have been more immediate and effective if the interface would
allow such candidates to be shown side-by-side, two at a time.

Since the process of structure learning is interactive, the users also noted
how the possibility of cumulating constraints would be beneficial. In the current
framework, the forced and forbidden arcs are clearly visible in each network,
but they have to be set again every time a learning method is run. Despite
results of slightly higher quality provided by the memetic approach, both users
felt that the improvement in quality did not justify the extra time needed to
obtain the solution (this approach can take up to several minutes, while the
others finish running after a few seconds). For this reason, the experts favoured a
more interactive approach, running the deterministic heuristic (GTT), changing
the forced and forbidden arcs in its results, and repeating the process until a
satisfactory solution was found.

Concerning algorithm performance, it should be noted that in order to un-
derstand the efficacy of the tool one of the users repeatedly divided the original
network in smaller networks, being more confident that in this way he could
highlight links that he deemed right or wrong (see Figure 5 for an example).
In networks with a reduced number of variables, however, the difference in per-
formance between the methods became less clear, since smaller search spaces
inevitably favours the heuristics. Nevertheless, the second expert was able to
use the tool to eventually exclude a potential relationship between two variables
in the process by iteratively generating configurations and then focusing on the
log-likelihood values presented by the different candidate solutions.

Summarizing, the feedback given by the expert user in this first trial allowed
us to compile a list of features that should make the structure learning experience
more efficient:

1. Speeding up the memetic algorithm is recommended, and can be done straight-
forwardly by using parallel evaluations and letting the user tweak some in-
ternal parameters;
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Fig. 5. One of the sub-networks extensively explored by the user. In particular, this
one contains only qualitative variables from the original dataset.

2. Allowing the user to compare solutions side-by-side could be very helpful for
the user, since humans are more inclined to visually compare two network
at the same time than by simply browsing through the history;

3. Modifying the memetic algorithm to ask for the user’s input at predeter-
mined points (in order to try to extract his preferences by comparing net-
works, as in user-centric memetic algorithms [14]) might be a way to involve
the user in a more time-consuming evolutionary process;

4. Designing special features to address Dynamic Bayesian Networks (DBNs).
DBNs are extensively used in the agri-food field, and existing BN tools are
often missing inference and learning method specifically tailored for these
structures;

5. Minor features such as: allowing the user to reverse arcs; visualizing node-
related statistics in pop-up windows (for clarity); selecting several arcs at
the same time; and making it possible to select only a subset of variables
from the original dataset.

6 Conclusion

In this paper we presented a preliminary study on balancing automatic evolution
and user interaction for the NP-hard problem of Bayesian network structure
learning. The study was performed through a graphical user interface.

A test run with a modelling expert showed that the tool is able to assist
the user in expressing knowledge that would be difficult to encode in a classical
fitness function, returning more satisfying models than a completely automatic
approach. Despite the promising preliminary results, several improvements must
be performed on the proposed framework to enhance usability and progress
towards an optimal balance between automatic evolution of results and user
interaction. For example, the evolutionary approach included at the core of the
framework is found to be too time-consuming when compared to fast state-of-
the-art heuristic algorithms.
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Further developments will add other evolutionary structure learning algo-
rithms, as well as the possibility for more user interaction in the definition of
parameters and during the evolution itself.
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Abstract. The present paper proposes a new variant of harmony search (HS) 
algorithm employing the nonlinear variations of parameters, like harmony 
memory considering rate (HMCR), pitch adjusting rate (PAR) and bandwidth 
(bw), for solving optimization problems. The proposed HS algorithm has been 
successfully hybridized with Lyapunov theory to design stable adaptive fuzzy 
controllers, so that the designed controller can not only guarantee desired 
stability but also provide satisfactory transient performance with a high degree 
of automation in the design process. The modified HS algorithm based fuzzy 
controllers have been implemented for two nonlinear benchmark systems. The 
results demonstrate that the proposed parameter variation comfortably leads to 
enhanced transient performance of the controlled systems when compared to 
similar fuzzy controllers designed employing hybridization of Lyapunov theory 
and the traditional HS algorithm. 

1   Introduction 

The harmony search (HS) algorithm, first proposed by Z. W. Geem in 2001 [1], is a 
relatively recently proposed meta-heuristic optimization algorithm. It was 
conceptualized using the musical process of searching for a perfect state of harmony. 
The harmony in music can be replicated as analogous to an optimization solution 
vector, and the musician’s improvisations bear strong similitude with the search 
methods in optimization procedures. One of the many characteristics of the HS 
algorithm is that it does not need correct initialization of the decision variables [2], 
[11]. Furthermore, in contrast to a gradient search, the HS uses a stochastic random 
search that is based on the harmony memory considering rate (HMCR) and the pitch 
adjusting rate (PAR), so that there is no need to acquire derivative information to 
proceed with the optimization process [2], [3], [5]. In comparison with earlier meta-
heuristic optimization algorithms, like genetic algorithm (GA), evolutionary 
algorithm (EA) etc., HS imposes fewer mathematical requirements and can be easily 
adopted for various types of engineering optimization problems. The basic HS 
algorithm has been improvised by manipulating the controlling parameters of the 
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algorithm, i.e. HMCR, PAR etc. [4], [11]. Inspired by these modifications, this paper 
proposes some new modifications of the basic HS algorithm, where the controlling 
parameters are varied simultaneously throughout the generation of harmony 
improvisations following different rules to finally arrive at the optimal solution 
vector. This new variant of HS algorithm, proposed in this work, utilizes the nonlinear 
variations of HS parameters in each iteration of improvisation of harmony memory 
(HM). The proper choice of HS parameters such as HMCR, PAR and bw is of 
paramount importance for achieving desired performance of the optimization 
algorithm. The original HS algorithm as proposed by Geem in [1], utilized user 
chosen, fixed values of all these control parameters. These parameters are responsible 
for the convergence of this meta-heuristic search algorithm and also the 
diversification and the exploration capabilities of the HS algorithm greatly depend on 
these parameters.  

The present paper also demonstrates how a systematic procedure of designing 
stable adaptive fuzzy logic controllers (AFLCs) using hybridizations of Lyapunov 
theory based approach (LTBA) and the nonlinear parameter variation based HS 
algorithms can be carried out. The hybrid process of controller design attempts to join 
together the strong points of both Lyapunov theory based local search method and 
stochastic optimization based global search method to finally evolve a superior 
method [10], [11]. The aims of these design techniques are to perform simultaneous 
adaptations of both the architecture of an FLC and its free parameters, such that two 
following requirements can be simultaneously satisfied: i) to guarantee the stability of 
the closed loop system and ii) to accomplish very high degrees of automation in the 
design process, utilizing HS algorithm, by getting rid of many manually tuned 
parameters [9], [10], [11]. Hence the main objective of this work is to design stable 
adaptive fuzzy controllers which can provide high degree of automation, guarantee 
asymptotic stability and can achieve superior transient performance in comparison 
with similar stable AFLCs designed employing hybridization of Lyapunov theory and 
the traditional HS algorithm. 

The rest of the paper is organized as follows: section 2 introduces the HS 
algorithm and section 3 presents its proposed variant. Section 4 details the design of 
HS algorithm based stable adaptive fuzzy controller and section 5 shows the 
simulation studies for two nonlinear systems. Section 6 concludes the paper.  

2   Harmony Search Algorithm 

HS algorithm is a meta-heuristic algorithm based on music [1], [5]. Now-a-days, 
many such meta-heuristic algorithms are in existence in the literature, almost all are 
either imitating some natural or artificial phenomena. The most frequently used 
algorithm is genetic algorithm (GA), which performs on the basis of natural selection 
and mechanism of population genetics. Other such computational algorithms, similar 
to GA, are evolution strategies, genetic programming, particle swarm optimization, 
ant colony optimization, simulated annealing, tabu search etc. In comparison to the 
other meta-heuristics, HS algorithm is based on the musical process of searching for 
perfect state of harmony, utilizing the aesthetic and acoustic criteria. The HS 
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algorithm performs in a very similar way to musical instruments, where a 
combination of pitches decide the quality of harmony generated, here a set of values 
of the decision variables is judged by the corresponding value of the objective 
function. As in musical harmony, if a combination of decision variables can produce 
good result, then this solution vector is stored in memory and this helps to create an 
improved solution in near future.  

3   Proposed Nonlinear Parameter Variation in HS Algorithm 

The traditional HS algorithm uses fixed values for each of HMCR, PAR and bw and 
these parameters help the algorithm to find globally and locally improved solutions. 
In HS algorithm these parameters are very crucial in fine-tuning the optimized 
solution vectors, and can be potentially helpful in adjusting the convergence rate of 
the algorithm to attain the optimal solution. 

In an improvement suggested in [4], the PAR and bw are varied throughout the 
generations in a linearly increasing and logarithmically decreasing manner 
respectively, but the HMCR parameter is kept constant. This modification showed 
successful results for several constrained and unconstrained optimization problems 
particularly from mechanical engineering domain. Some modifications of the original 
HS algorithm had been proposed in [11], where both the HMCR and PAR are varied 
from a minimum value to a maximum value linearly and bw is kept fixed throughout 
the generations of improvisation of harmonies. 

Inspired by the modifications presented in [11], this paper proposes the 
simultaneous variation of HMCR, PAR and bw parameters throughout the generation 
of harmony improvisations in a nonlinear manner to obtain the optimal solution 
vector [8]. In this proposed modification of HS algorithm, each varied parameter is a 
nonlinear function of the current iteration number (t) and the nonlinear modulation 
index (n) at each harmony improvisation step. The proposed nonlinear variation of HS 
parameters (i.e. HMCR, PAR and bw) is given as: 

finalfinalinitialn

n

paramparamparam
iter

titer
ntftparam +−







 −== )(
)(

)(
),()(

max

max        (1) 

where paraminitial is the initial parameter value at the start of a given improvisation, 
paramfinal the final parameter value at the end of a given improvisation, when t = 
itermax, and itermax is the maximum number of iterations in a given improvisation. 
Figure 1 shows typical parameter variations with iterations for different values of n, 
on either side of unity. With n = 1, the system becomes a special case of linear 
variations of parameters with time. The proposed modification of HS algorithm is 
shown in Algorithm 1. The physical implication of this nonlinear variation is that as 
the generation of harmony improvisation increases, the optimization approach relies 
more on the harmony memory because the harmony memory would be richer in 
experience due to the improvisations throughout the generations. Hence HMCR 
parameter has been gradually increased. The PAR parameter is also increased because 
the fine tuning is required as the optimization algorithm relies more on the past values 
of the harmonies stored in the memory [11]. On the other hand, the parameter bw is 
decreased from a initial higher value to lower value, as initially the high bandwidth is 

150



expected to increase the exploration of search space and finally a low bandwidth helps 
the solution to be confined near the probable optimal solution point. This presents the 
motivation behind the nature of nonlinear, dynamic modifications of the HMCR, PAR 
and bw parameters proposed in this variant of the original HS algorithm. 

Algorithm 1: Proposed modified HS algorithm 
 
begin 
Define objective function )(zg , qiZz ii ,...,2,1      , =∈ , z is a 
candidate solution vector comprising the set of decision 

variable(s) zi, [ ] qT
q Rzzzz ∈= ,,, 21 L , Zi is the universe of 

discourse of the ith decision variable zi i.e. 
maxmin −− ≤≤ iii zZz  and q is the number of decision variable. 

Generate HM with random harmonies. 
while (t<itermax) %itermax: maximum number of iterations 
  Determine HMCR, PAR and bw from 
  param(t)=f(t,n) % as given in (1) 

while (i <= number of variables) 
if (rand < HMCR(t)), Choose a value from HM for the 
variable i. 
if (rand < PAR(t)), Adjust the value of variable i 
as: zi= zi + bw(t)*ud(-1,1),  
 % ud is uniformly distributed function over (-1,+1) 
end if 
else Choose a random value. 
end if 

end while 
Accept the new harmony (solution) if better. 

end while 
Find the current best solution. 

end 

4   Hybrid Stable Adaptive FLC Design 

The hybrid stable adaptive fuzzy control scheme presented in this paper is a 
concurrent combination of Lyapunov theory based approach (LTBA) of design and 
stochastic HS algorithm based approach (HSBA). 

4.1 Lyapunov Theory Based Approach of Adaptive Fuzzy Controller Design 

Let us consider that the objective is to design an adaptive strategy for an nth order 
single input single output (SISO) nonlinear plant given as [6], [7]: 
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Fig. 1. Variations of HS parameters with iterations for different values of nonlinear modulation 
index (n) for (a) HMCR and PAR and (b) bw. 
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where,  )(⋅f and )(⋅g is an unknown continuous function, Ru ∈  and Ry ∈ are the 

input and output of the plant. It is assumed that the state vector is given 

as nTnT
n Rxxxxxxx ∈== − ),...,(),...,,( )1(

21 & . The system under control may have a 

reference model given as: 
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       (3) 

where w(t) is the excitation signal input to the reference model, and the state vector 

of the reference model is nTn
mmmm Rxxxx ∈= − ),...,( )1(

& .  

The control objective is to force the plant output y(t) to follow a given bounded 
reference signal ym(t) under the constraints that all closed-loop variables involved 
must be bounded to guarantee the closed-loop stability of the system, where the 
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tracking error is yye m −= . The objective is to design a stable adaptive fuzzy 

controller for the system as in (2).  
The ideal control law for the system in (2) and (3) is given as [6], [9]: 

 [ ]ekyxf
xg

u Tn
m ++−= )(* )(

)(

1
      (4) 

where )(n
my is the nth derivative of the output of the reference model, 

Tneeee ),...,,( )1( −= & is the error vector and nT
n Rkkkk ∈= ),...,,( 21 is the vector 

describing the desired closed-loop dynamics for the error. 
This definition implies that u* guarantees perfect tracking i.e. 

0)( if )()( =≡
∞→

teLttyty
t

m .  To ensure stability, it has been assumed that the control 

u(t) is given by the summation of a fuzzy control, )( θxuc and an additional 

supervisory control )(xus  [9]. Thus u(t) is given as:  

)()()( xuxutu sc += θ       (5) 

It has been assumed that the AFLC is constructed using a zero order Takagi-
Sugeno (T-S) fuzzy system. Then )( θxuc  for the AFLC is given in the form [6], [7]:  

  )()( xxu T
c ξθθ ∗=       (6) 

where T
N ] ...  [ 21 θθθθ = = the vector of the output singletons, )(xξ  = vector 

containing normalized firing strength of all fuzzy IF-THEN 

rules T
N xxx ))(),...,(),(( 21 ξξξ= . 

Let us define a quadratic form of tracking error as ePeV T
e 2

1=  where P is a 

symmetric positive definite matrix satisfying the Lyapunov equation [6]. With the use 

of us(x) it can be shown that 0
2

1 ≤−≤ eQeV T
e
& , where Q is a positive definite matrix 

[6], [9]. Thus, as P > 0, boundedness of Ve implies the boundedness in x. Hence, the 
closed-loop stability is guaranteed.  

The zero order T-S type fuzzy control uc(x|θ) can be  so constructed that it will 
produce a linear weighted combination of adapted parameter vector θ. Thus a simple 
singleton based adaptation law as proposed in [7], [9], [10] can be given as: 

 )(xpe
n

T ξνθ =&         (7) 

where ν > 0 is the adaptation gain or learning rate and pn is the last column of P 
and the flowchart representation of LTBA is shown in Fig. 2. 

4.2 HS Algorithm Based Fuzzy Controller 

In LTBA design of direct AFLC, only the output singletons are adapted and the 
other free parameters e.g. supports of the input membership functions (MFs), input 
and output scaling gains of the AFLC are chosen a priori. However, while designing 
the HS algorithm based optimal controller, all these parameters are obtained 
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Fig. 2. Flowchart representation of LTBA of controller design. 
 
automatically by encoding them as part of the solution vector i.e. each of these 
parameters forms a decision variable.  
In HS algorithm based design, a harmony i.e. candidate solution vector (CSV) in 
solution space is formed as [11]: 
 
Z = [center locations of the MFs | scaling gains | positions of the output singletons]    (8) 

 
Figure 3(a) shows the flowchart representation of HS based adaptation algorithm 

for the AFLC. Here an initial pool of HMS (harmony memory size) number of 
candidate solution vectors has been created and on the basis of simulating the system 
for each candidate controller by using the candidate controller simulation (CCS) 
algorithm [10], as shown in Fig. 3(b), and evaluation of the fitness function, the initial 
pool has been sorted to generate initial HM (harmony memory) matrix. The fitness 
function is chosen as an weighted combination of integral absolute error (IAE) and 

control energy (CE), where IAE =∑
=

∆
PST

k
ctke

0

)( , CE = ∑
=

∆
PST

k
ctku

0

2))(( , PST = plant 

simulation time, ct∆  = step size or sampling time. So the fitness function (FF) is 

given as: 

 ∑∑
==

∆+∆=
PST

k
c

PST

k
c tkutkeFF

0

2

0

))((*)( λ     (9) 

where λ is the weighting factor used to form the fitness function FF. 

4.3 Hybrid Fuzzy Controller 

In this design process, the LTBA and the HSBA [11] run concurrently to optimize 
the fuzzy controller i.e. center locations of the input MFs, positions of the output 
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      (a)                                                           (b) 
Fig. 3. Flowchart representation of (a) HSBA of controller design and (b) CCS algorithm. 

 
Fig. 4. Flowchart representation of hybrid concurrent algorithm of controller design. 
 
singletons etc. and the scaling gains of the input and output variables [10], [11]. This 
hybrid concurrent stable adaptive fuzzy controller is named as HCBA in this work. 

In this hybrid method, the solution vector Z is divided into two sub-groups given as 
[10]: 

 ]     [ θψ=Z         (10) 

where ψ = [structural flags for MFs | centre locations of the MFs | scaling gains] 
and θ = [position of the output singletons].     

The decision variables comprising ψ have a non-linear influence and the decision 
variables comprising θ have a linear influence on the control signal uc [10]. For each 
harmony chosen as a candidate controller, it is first subjected to the LTBA algorithm 
and the θ portion of the candidate controller i.e. the chosen harmony is updated by the 
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finally adapted θ vector obtained from the LTBA algorithm. Then this updated 
harmony is subjected to a usual pass of the HSBA algorithm. In this process θ vector 
is subjected to both local and global search experiences in every improvisation of a 
harmony. The flowchart representation of hybrid concurrent fuzzy controller design 
algorithm is shown in Fig. 4. 

5   Simulation Case Study 

The effectiveness of the proposed controller design schemes are evaluated with two 
benchmark systems. The process models are simulated each using a fixed step 4th 

order Runge-Kutta method with sampling time ct∆  = 0.01 sec.  

 
5.1 Case Study – I: Inverted Pendulum System 
The system under consideration is the inverted pendulum system given in [10] and is 
given as: 
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where 
)(cos

sin)(cossin
)(

3
4

1
2

1112

mMlxml

xgmMxxmlx
xf

+−
+−=  and 

)(cos

cos
)(

3
4

1
2

1

mMlxml

x
xg

+−
−= , g = 9.8 m/s2, m = 0.1 kg, M = 1 kg, l = 0.5 m [10]. 

The control objective is to track the reference signal ym, where ym= sin(t).  

The choice of parameters for this simulation process is as: 







=

001.001.0

01.01
P , 

1=Uf , and K = [2 1]. The design strategies of LTBA, HSBA and the hybrid 

concurrent are simulated in this case study. The adaptation gain ν is set to 0.1 for 
LTBA and hybrid concurrent methods. In this case study, a harmony memory (HM) 
of ten harmonies is considered. For each simulation, 200 generations of HM 
improvisation is set. Fixed number of evenly distributed input MFs, here 55× , are 
used for initial HM formation. HSBA algorithm further tunes the free parameters and 
the positions of the output singletons to minimize the tracking error.  

The performances of AFLCs designed for the inverted pendulum system in this 
paper using LTBA, original HS algorithm as in [1] and linear modification of HS 
algorithm [11] based strategies are compared in Table 1. Proposed modified HS 
algorithm (HSBA) based and hybrid concurrent (HCBA) strategies are compared in 
Table 2. Let the nonlinear modulation indices be n1, n2 and n3 respectively for 
HMCR, PAR and bw parameters. Initially n1 and n2 are varied and the parameter bw 
is kept constant and the corresponding performances are shown in Table 2. In this 
study the combination of n1=0.6 and n2=1 produced best results in terms of IAE and 
combination of n1=1.4 and n2=1 produced best results in terms of CE, for both HSBA 
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Table 1.  Performance evaluation of inverted pendulum for LTBA, original HSBA [1] and 
modified HSBA (M-HSBA) [11].  

Control Strategy IAE  
LTBA 0.7818 
HSBA [1] 0.6668 
M-HSBA [11] 0.6652 

Table 2.  Performance evaluation of inverted pendulum for different values of nonlinear 
modulation index (n). n1= nonlinear modulation index for HMCR, n2= nonlinear modulation 
index for PAR and n3= nonlinear modulation index for bw.  

Control 
Strategy 

n1=0.6 n1=1 
n2=0.6 n2=1 n2=1.4 n2=0.6 n2=1 n2=1.4 

HSBA 
IAE 0.6960 0.5752 0.6762 0.7554 0.6495 0.7573 
CE 4462 8528 5508 4266 7390 4632 

HCBA 
IAE 0.6107 0.4209 0.5670 0.6449 0.6791 0.6433 
CE 9196 13468 9952 6482 6096 5774 

 
Control 
Strategy 

n1=1.4 
n2=0.6 n2=1 n2=1.4 

HSBA 
IAE 0.6493 0.8693 0.7376 
CE 4888 3808 5416 

HCBA 
IAE 0.6934 0.7417 0.5532 
CE 5614 5158 7808 

 
Control 
Strategy 

IAE (n1=0.6, n2=1) 
n3=0.6 n3=1 n3=1.4 

HSBA 0.5198 0.7546 0.6969 
HCBA 0.7077 0.5483 0.5733 
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(a)                                                                      (b) 

Fig. 5. Evaluation period response of (a) HSBA controller (n1=0.6 and n2=1) and (b) HCBA 
controller (n1=0.6 and n2=1). 

 
and HCBA controller design strategies. Then we kept n1 and n2 fixed as n1= 0.6 and 
n2=1 and varied bw from a higher value to a lower value throughout the generation 
using different modulation indices n3. In this case, it has been found that the best 
performance of HSBA is obtained when n1= 0.6, n2=1, n3 = 0.6. However, in terms 
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of IAE, the best performance is achieved with HCBA controller with n1= 0.6, n2=1,  
and keeping a fixed value of bw than utilizing a dynamically varying bw. The sample 
performances of the controllers for the best achieving IAE for both HSBA and HCBA 
are shown in Fig. 5. 

5.2 Case Study – II: DC Motor System with Nonlinear Friction Characteristics 

The controlled plant under consideration is a second order DC motor containing non-
linear friction characteristics described by the following model [9], [10]: 
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where 1xy =  is the angular position of the rotor (in rad), x2 is the angular speed (in 

rad/sec) and u is the current fed to the motor (in A). The plant parameters are CT = 

10Nm/A, J = 0.1 kgm2 and the non-linear friction torque )5(tan5)( 2
1

2 xxf −=  Nm. 

  
The control objective is to make the angular position y follow a reference signal 

given by 

mmm yytwy &&& 40400)(400 −−=      (13) 

The controller is trained by applying a signal w(t), which changes its value 
randomly in the interval (-1.5, 1.5) in every 0.5 sec., to the reference model, which 
gives an output ym(t). This reference signal ym(t) is chosen as it contains a huge 
number of frequencies and leads to good exploration of controller input space [88]. 

The design parameters for this case study are chosen as 







=

001.001.0

01.05
P , fU = 1.5, 

K=[400 40] and the value of adaptation gain is chosen as ν = 0.01. The other 
parameters of the case study are chosen same as case study – I. In a similar fashion, as 
in case study– I, the results are reported in Table 3 and Table 4. As the best 
performance in case study – I was achieved with a fixed bw, in this case study also we 
kept bw fixed and performed different nonlinear variations of n1 and n2. In this case 
study the best IAE and CE values are found in a combination of n1 and n2 where the  
HMCR and PAR parameters undergo nonlinear variations. In terms of IAE, the best 
performance of HSBA is obtained with n1=0.6 and n2=1 and the best performance of 
HCBA is obtained with n1=1.4 and n2=0.6. Similarly, in terms of CE, the best 
performance of HSBA is obtained with n1=0.6 and n2=0.6 and the best performance 
of HCBA is obtained with n1=1 and n2=0.6. The sample performances of the 
controllers in case study– II, for the best achieving IAE, for both HSBA and HCBA 
are shown in Fig. 6. 

6   Conclusion 

In this work a new variant of harmony improvisation technique of basic HS algorithm  
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Table 3.  Performance evaluation of DC motor with nonlinear friction characteristics for 
LTBA, original HSBA [1] and modified HSBA (M-HSBA) [11].  

Control Strategy IAE  
LTBA 0.6402 
HSBA [1] 0.6242 
M-HSBA [11] 0.7194 

Table 4.  Performance evaluation of DC motor with nonlinear friction characteristics for 
different values of nonlinear modulation index (n). n1= nonlinear modulation index for HMCR, 
n2= nonlinear modulation index for PAR.  

Control 
Strategy 

n1=0.6 n1=1 
n2=0.6 n2=1 n2=1.4 n2=0.6 n2=1 n2=1.4 

HSBA 
IAE 0.3396 0.2764 0.2903 0.3997 0.2914 0.3164 
CE 22.97 23.13 27.01 27.23 26.82 27.81 

HCBA 
IAE 0.2920 0.3360 0.3615 0.3561 0.3519 0.3255 
CE 26.32 29.53 35.03 19.33 33.51 28.74 

 
Control 
Strategy 

n1=1.4 
n2=0.6 n2=1 n2=1.4 

HSBA 
IAE 0.2824 0.3207 0.3110 
CE 32.17 28.16 30.65 

HCBA 
IAE 0.2519 0.2548 0.2992 
CE 24.34 27.27 24.53 
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(a)                                                                      (b) 

Fig. 6. Evaluation period response of (a) HSBA controller (n1=0.6 and n2=1) and (b) HCBA 
controller (n1=1.4 and n2=0.6). 
 
has been proposed. The novel concept of nonlinear modulation index has been 
introduced to adapt the control parameters of HS algorithm, namely HMCR, PAR and 
bw. This modified HS algorithm has been hybridized with Lyapunov theory for 
designing stable adaptive fuzzy controllers and has been implemented for controlling 
two benchmark nonlinear systems. This hybridization process demonstrates a 
concurrent operation of LTBA and HSBA to optimize the positions of the output 
singleton and the free parameters of the AFLC simultaneously. The results showed 
that the nonlinear variations of HS parameters could produce better transient 
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performances in terms of IAE and CE compared to similar hybrid stable AFLCs 
designed by basic HS with linear variations of control parameters. It has been shown 
that nonlinear variations of HMCR and PAR, coupled with a fixed value of bw, could 
produce the best performing HCBA controller. However the best combination of n1 
and n2 varied for the two case studies considered. A detailed study in future will be 
undertaken based on a large number of benchmark processes to ascertain whether any 
suitable empirical guideline can be determined for the optimum choice of the set{n1, 
n2}, that will largely produce superior performances for a large variety of processes.    
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Abstra
t. Team Orienteering with Time Windows and Period Depen-

dant Pro�ts (TOPtw-PDP) extends the Multi-period Team Orienteering

Problem with time windows. In this new problem, ea
h potential 
us-

tomer is asso
iated di�erent pro�ts, one pro�t value for ea
h possible

visit period. The problem 
onsists in maximizing the sum of 
olle
ted

pro�t by a �xed size �eet, visiting at most on
e ea
h potential 
ustomer

during a given time horizon. In this work, a linear model is presented

and a memeti
 algorithm is proposed to solve TOPtw-PDP.

Keywords: Multi period team orienteering, period dependent pro�ts,

mixed integer program, memeti
 algorithm

1 Introdu
tion

Orienteering problems are initially inspired by a sport game, where ea
h 
om-

petitor has to build a path between the starting and end points. They obtain a

s
ore (or pro�t) every time they visit a 
he
k point and the path duration is lim-

ited by a maximal threshold. The obje
tive is to maximize the s
ores 
olle
ted.

This problem was de�ned by Tsiligrides [1℄ and 
onsists in building a single tour

so that the total pro�t 
olle
ted is maximized, subje
t to time restri
tion on the

tour length. When more than one tours are to be built (K > 1), the problem is


alled Team Orienteering problem and was des
ribed the �rst time by Chao [2℄.

For a survey on routing problems with pro�ts see Vansteenwegen et al. [3℄ and

Feillet al. [4℄.

This paper is dedi
ated to an extension of the Multi Period Team Orien-

teering Problem with time windows where ea
h 
ustomer is asso
iated di�erent

possible pro�t values, depending on the period it 
an be visited within. The

(T)OPtw is an extensions of the (Team) Orienteering Problem where the visit

of ea
h sele
ted 
ustomer should be s
heduled in a prede�ned time interval.

This problem is proposed and solved to optimality by Righini and Salani [5, 6℄.

Vansteenwegen extended OPtw to TOPtw and solved this later problem using

heuristi
 approa
hes [7℄.

In this paper we propose a memeti
 algorithm to solve a routing problem in a

servi
e delivery 
ontext where the the 
ustomers are willing to pay more or less,
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2

depending on the period when the servi
e is delivered. Another appli
ation area

is the tourism guidan
e systems where the satisfa
tion obtained by the visit of

a site depends on the period on whi
h the visit is made. The paper is organized

as follows: a formal de�nition and a linear mixed integer program are presented

in Se
tion 2, a memeti
 algorithm based solution pro
edure and its 
omponents

are detailed in Se
tion 3. Se
tions 4 and 5 give respe
tively the numeri
al results

and 
on
luding remarks.

2 Problem Formulation

The Team Orienteering Problem with Time Windows and Period Dependent

Pro�ts is des
ribed on an undire
ted graphG = (V,E) where V = {0, 1, ..., n, n+
1} is the set of nodes. Nodes 1, ..., n are the potential 
ustomers whi
h must be

visited, when sele
ted, within a time window [ei, li] ∀i ∈ {1, ..., n}. The nodes 0
and n+1 are the starting and ending point of any route and they 
an be the same

or di�erent point. This problem 
onsiders a multi-period horizon H 
onstituted

by T elementary time periods. To ea
h 
ustomer i, a pro�t pti is asso
iated and

this pro�t depends on the servi
e period t ∈ H = {1, ..., T}. E is the set of

undire
ted edges, ea
h edge [i, j] de�nes a 
onne
tion between nodes i and j and
is weighted by wij , the time required to travel along it in any dire
tion. From

now on, for the sake of simpli
ity, ea
h edge is repla
ed by two ar
s of opposite

dire
tions with the same traveling time wij = wji. A �eet of K vehi
les with a

time 
apa
ity of λ is available at node 0 in ea
h period t = 1, ..., T .

The goal is to determine the 
ustomers to be visited, to assign ea
h one

to a unique time period and to build at most K routes per period in order to

maximize the total 
olle
ted pro�t over the whole horizon H . A solution S is

feasible if: (a) ea
h sele
ted 
ustomer is servi
ed on
e over the horizon within

its time window and the pro�t 
olle
ted at this 
ustomer depends on the period

for whi
h it is assigned, (b) ea
h route starts at 0 and ends at n+ 1, and (
) at

most K routes are built in ea
h period and the time 
apa
ity λ of ea
h one 
an

not be ex
eeded. The TOPtw-PDP is obviously NP-hard, sin
e it redu
es to the

TOPtw, whi
h is already NP-hard, when T = 1.

max
∑

i∈V

∑

t∈H

pti · yti (1)

subje
t to ∑

t∈H

yti ≤ 1 ∀i ∈ V \ {0, n+ 1} (2)

∑

j∈V \{0}
xt
ij =

∑

j∈V \{n+1}
xt
ji = yti ∀i ∈ V \ {0, n+ 1}, ∀t ∈ H (3)

∑

j∈V \{0,n+1}
xt
0j =

∑

j∈V \{0,n+1}
xt
jn+1 ∀t ∈ H (4)
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∑

j∈V \{0,n+1}
xt
0j ≤ K ∀t ∈ H (5)

ei · yti ≤ ati ≤ li · yti ∀i ∈ V, ∀t ∈ H (6)

ati + λ · xij − atj ≤ λ− wij ∀i, j ∈ V, ∀t ∈ H (7)

ati ≤ λ− win+1 ∀i ∈ V \ {n+ 1}, ∀t ∈ H (8)

xt
ij ∈ {0, 1} yti ∈ {0, 1}

ati ∈ R ∀i, j ∈ V, ∀t ∈ H (9)

In the linear model 1-9, yti is the binary variable taking 1 if the 
ustomer i is
servi
ed during the period t. In the same way, the binary variable xt

ij gets the

value 1 if the ar
 (i, j) is traversed during the period t. The servi
e starting time

at 
ustomer i in period t is given by the variable ati.
The obje
tive fun
tion (1) maximizes the total 
olle
ted pro�t. Constraints

(2) forbid servi
ing the same 
ustomer more than on
e. Constraints (3) ensure

that ea
h time an in
oming ar
 is used to rea
h a node, an outgoing ar
 is also

used to leave it, and that this node is really servi
ed. Constraints (4) and (5)

limit the �eet size. Constraint (6) for
es servi
e to take pla
e in the time windows

of ea
h 
ustomer. The 
onsisten
y of starting times of servi
e at the 
ustomers is

guaranteed by 
onstraints (7). The time length 
apa
ity of the vehi
les is insured

by the 
onstraint (8). Constraints (9) give the integer (xt
ij and yti) and real (ati)

nature of the de
ision variables.

3 Memeti
 Algorithm

Given the 
omplex nature of this problem, to be able to solve average and large

size problems, we propose a memeti
 algorithm. The 
on
ept of Memeti
 Algo-

rithms is introdu
ed byMos
ato [8℄,who proposed this approa
h as a 
ombination

between population based global sear
h and heuristi
 lo
al sear
h made by ea
h

individual without the 
onstraints of a geneti
 representation. At ea
h itera-

tion (generation), the group of solutions (population) undergo 
rossing-over and

the in
umbent solutions are improved through a lo
al sear
h pro
edure. Only

the best solutions (
hromosomes) are kept for the next generation. The general

stru
ture of this approa
h is given by the Algorithm 1.

First an initial population Pop of Popsize 
hromosomes is generated as ex-

plained in Se
tion 3.2. A 
hromosome 
an be seen as an ordered list of visited


ustomers without delimiters, 
alled also a giant tour. The population is then

sorted in de
reasing order of pro�ts after improving its elements by a lo
al sear
h

pro
edure (Se
tion 3.5). The main loop of the algorithm exe
utes NbGen itera-

tions, ea
h one 
onsists in generating αmax new solutions by using the 
rossover

operator explained in Se
tion 3.4. Ea
h step 
hooses two parents P1 and P2 by a

roulette sele
tion and applies the 
rossover to get two 
hildren C1 and C2 as de-

tailed in Se
tion 3.4. These two 
hildren are evaluated by the splitting pro
edure

and the obtained solutions are improved with a probability π by the lo
al sear
h.

The in
umbent solutions are added at ea
h step of the Repeat loop to Pop, and
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Algorithm 1 : General stru
ture of the memeti
 algorithm.

Build the initial population Pop of Popsize 
hromosomes evaluated by Split

Sort Pop in de
reasing order of pro�t.

for Gen := 1 to NbGen do

α := 0;
repeat

α := α+ 1
Sele
t two parents P1 and P2 in Pop by a roulette sele
tion

Apply 
rossover to the parents to get the 
hild two 
hildren C1 and C2

Evaluate C1 and C2 with Split

for i := 1 to 2 do
if random ≤ π then

Apply lo
al sear
h to Ci

end if

end for

Add C1 and C2

until (α = αmax)

Resort Pop and Keep only Popsize best 
hromosomes

end for

after generating αmax new solutions, Pop is sorted again in de
reasing order of

pro�ts and its size is reset to Popsize by keeping only the best 
hromosomes.

3.1 Initial solution heuristi
 (ISH)

First the 
ustomers are assigned to periods for whi
h their pro�ts is maximal

then a TOPtw Solution is 
onstru
ted in ea
h period using the best insertion

heuristi
 des
ribed in [9℄. for ea
h period t = 1, ..., T and at ea
h iteration, the

method evaluates all feasible insertions of unvisited nodes assigned to the period

and sele
ts the node representing the best insertion. Let i be some node in a

route and let r be a node 
andidate for the insertion. Let Sr and gr denote the

set of nodes rea
hable from node r (i.e. the set of nodes s su
h that atr+wrs ≤ ls)
and its 
ardinality, respe
tively. Then, the best insertion is determined by the

pair (i, r) for whi
h ρir = gr · pt
r

∆ir
is maximum. where ptr is the pro�t of node r

in the period t and ∆ir = wir + waitr + wrj − wij measures the possible delay

if node r is inserted between node i and its su

essor j in the route, with waitr
denoting the waiting time in node r. At the beginning K tours are initialized

with the �rst K nodes for whi
h ρ0r is maximum. Then, the remaining unvisited

nodes are 
onsidered to 
omplete the solution. The pro
edure stops when no

more feasible insertion 
an be found in all periods.

3.2 Solution 
oding and initial population

Ea
h solution in the population is en
oded as a 
hromosome de�ned by an or-

dered sequen
e of visited 
ustomers, without route delimiters. Chromosomes 
an

have di�erent lengths sin
e some 
ustomers 
an be unvisited. The 
hromosomes
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obtained by 
rossovers are split to obtain TOPtw-PDP solutions thanks to a

Split pro
edure explained in Se
tion 3.3. Conversely, a solution (obtained for

instan
e by a 
onstru
tive heuristi
) 
an be easily 
onverted into a 
hromosome

by 
on
atenating the lists of 
ustomers of its routes period per period. As we


an see in the �gure 1, a solution with the route (0,3,7,9) in the �rst period and

(0,4,1,5,9) in the se
ond leads after 
on
atenation to the 
hromosome (3,7,4,1,5).

The o

urren
es of the starting and the ending depot nodes 0 and 9 are removed.

Fig. 1. Example of the 
on
atenation of a solution into a 
hromosome

A population is implemented as an array 
ontaining Popsize 
hromosomes.

In the �rst population, the solution obtained by the 
onstru
tive heuristi
 (ISH)

is in
luded. The remaining popsize − 1 ones are generated randomly. First, a


hromosome's size q is generated randomly between T and n, where T and n are

respe
tively the time horizon length and the number of 
ustomers. Then the q

ustomers forming the 
hromosome sequen
e are sele
ted one by one among the

set of unvisited 
ustomers.

3.3 Split pro
edure

The Split pro
edure, initially designed by Prins [10℄ for the VRP, is here extended

for the TOPtw-PDP. Split 
omputes a shortest path in an auxiliary graph A

ontaining one dummy node 0 and q other nodes 
orresponding to the q ordered

ustomers (T ≤ q ≤ n) of the 
hromosome. Ea
h subsequen
e of 
ustomers (Si,

Si+1, . . . , Sj) 
orresponding to a feasible route (with respe
t to 
ustomers

time windows and the maximal route length duration λ) is modelled by T ar
s

between i − 1 and j in A. Ea
h of T ar
s between i − 1 and j has the same

length but a di�erent total pro�t depending on the visiting period. The path

from node 0 to node n maximizing the pro�t in A 
an be 
omputed using a

modi�
ated version of the Bellman's algorithm for dire
ted a
y
li
 graphs. It

indi
ates where to split the 
hromosomes to get feasible routes optimally. The

routes on the giant tour do not need to be ordered i.e. a tour meant to be done

in period t 
an pre
ede another one of t′ where t > t′ but the number of routes
for any period t 
annot ex
eed the �eet size K. In �gure 2, a giant tour with 10


ustomers is splitted into 5 tours for 3 days with 2 vehi
les and a tour of day 3

pre
edes the tours of day 2.
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1 2 3 4 5 6 7 80 9 10

Day 1
Tour 1

Day 3
Tour 1

Day 2
Tour 1

Day 2
Tour 2

Day 3
Tour 2

Fig. 2. Example of splitting a giant tour into feasible tours

3.4 Crossover

The Linear Order Crossover (LOX) is used to 
ombine two 
hromosomes. First,

the length of the o�spring C1 is set to n and two 
rossover points are randomly

sele
ted in the �rst parent P1. The 
ustomers between the points in the �rst

parent are 
opied into the o�spring in the same positions and these 
ustomers

are deleted from the se
ond parent. The o�spring is then 
ompleted by the

remaining 
ustomers from parent P2 
onsidered in the same order from left to

right (Fig. 3).

3 8 6 2 11 47 1 5 16 9

4 311 13 8 2 10 9 15

4 2 157 1 313 8 11 10 9

P2

P1

O
ff

sp
ri

ng

Crossover points

Fig. 3. Example of 
rossover operation over parents P1 and P2

As mentioned before, the 
hromosomes are not all of the same size. For this

reason, when two parents are 
ombined, the resulting o�spring might 
ontain

empty spa
es due to the di�erent length of 
hromosomes representing the par-

ents. These empty spa
es must be removed by a left shift of the subsequent


ustomers and the length of the o�spring must also be updated.

The 
rossover operator generates two 
hild-
hromosomes by altering the role

of the parents. Ea
h 
hromosome is 
onverted into a real solution by using the

pro
edure Split explained in Se
tion 3.3. The resulting solution is further im-

proved, with a probability π , by the lo
al sear
h pro
edure explained in Se
tion

3.5.
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3.5 Lo
al sear
h

A lo
al sear
h LS based on four moves is used to improve the initial solutions and

the new solutions generated by the 
rossover operator. The �rst three moves that

we 
all routing moves are the well-known 2-Opt, relo
ate and swap whi
h 
an

involve only one or two di�erent routes in the same period or from two di�erent

periods. When these moves are applied to the routes of the same period, they

aim at redu
ing the total duration of the routes sin
e they neither 
hange the

subset of visited 
ustomers nor the 
olle
ted pro�t in the period. The 2-opt move

repla
es two edges in a route by two other edges. The relo
ate move removes one


ustomer and reinsert it at a di�erent lo
ation. The swap move ex
hanges the

positions of two 
ustomers. When these three moves are applied to the routes

of di�erent periods, they look hierar
hi
ally for in
reasing the 
olle
ted pro�t

as a �rst obje
tive and if no variation on total pro�ts, try to redu
e the route

lengths.

The forth and the last move aim to modify the list of visited 
ustomers: a

sequen
e of k 
ustomers is removed from a tour and repla
ed by a sequen
e

of entering 
ustomers. This move is intended to 
hange the subset of visited


ustomers and, as its evaluation is more time-
onsuming, it is attempted by the

lo
al sear
h only when no routing move is produ
tive. The entering sequen
e

is determined heuristi
ally: unvisited 
ustomers are added one by one and the


ustomer i added at ea
h step is the one maximizing the ratio ρir (see Se
tion

3.1).

4 Test instan
es and numeri
al results

4.1 implementation

The algorithms were 
oded in C++ and CPLEX was used to solve the mathe-

mati
al model (of Se
t.2) in an Intel Core i7-3930K pro
essor 
lo
ked at 16GB

ram.

4.2 Test instan
es

The test instan
es used in this paper are those of Team Orienteering Prob-

lem with Time widows. TOPtw instan
es are in fa
t based on Solomon and

Derosiers's instan
es [11℄ and on Cordeau et al.'s ones [12℄ initially proposed for

the VRPTW (Vehi
le Routing with Time Windows) and the Multi Depot Pe-

riodi
 VRPTW (MDPVRPTW), respe
tively. In all instan
es the demand of a


ustomer be
omes the node pro�t and all 
ustomers are 
onsidered as a
tive the

same day in the 
ase of Cordeau's instan
es. The number of nodes in Solomon's

data set equals 100, whereas the number of nodes in Cordeau's data set varies

from 48 to 288. In [13℄ and [6℄, the authors used 29 Solomon's instan
es of series


100, r100 and r
100 and the �rst 10 Cordeau's instan
es. [13℄ 
onsidered addi-

tionally 27 Solomon's instan
es of series 
200, r200 and r
200 and the instan
es

pr11- pr20 of Cordeau et al. The Ben
hmark we used for our tests 
ontains the
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groups 
100, r100, r
100, 
200, r200 and r
200 as in [13℄, however we added

a time horizon H with di�erent number of periods T = 1, 2, 3, 4 and di�erent

values of the maximal route length λ.

4.3 Numeri
al results on TOPtw-PDP instan
es

As mentioned before, the developed resolution approa
h is exe
uted on Solomon's

test instan
es [11℄ whi
h were modi�ed to meet the requirement of the new prob-

lem studied in this paper. The number of periods T varies from 1 to 4, the number

of vehi
les ranges from 1 to 4 and λ takes di�erent values. After several tests

on a small subset of instan
es, the memeti
 algorithm parameters were �xed as

follows: Popsize = 20, NbGen = 20, αmax = 10 and π = 0.1.

Table 1 shows the average results on RC instan
es for T ≤ 3 and k ≤ 3.
It is organized as follows: the �rst two 
olumns present the number of vehi
les

and λ of the instan
es, then for periods from 1 to 3 the average result of the

initial solution heuristi
, the average result of the memeti
 algorithm, the average

improvement and the average exe
ution time of the memeti
 algorithm are given.

Table 1 shows us that the average improvement of the initial solution realized

by the memeti
 algorithm is 10.21% and that the maximum improvement rate

is 22.05%. It is interesting to note that the number of periods does not have a

dire
t impa
t on the improvement rate (Average of 10.21% for T = 1, 11.31%
for T = 2 and 8.96% for T = 3). On the other hand, the improvement rate

in
reases as the time limit of the tours de
rease. One of the reasons is that the

initial solution heuristi
 is less e�
ient when the time 
onstraint on the routes

is more restri
ting and the memeti
 algorithm has more room to improve.

We also observe that, the memeti
 algorithm is extremely qui
k: the average

exe
ution time is 15.28 se
onds. The average exe
ution time in
reases with the

number of periods: the mean exe
ution time for 1 period is 10.01 se
onds while

the average exe
ution time for 3 periods is 25.54 se
onds. This is due to the split-

ting pro
edure whose time 
omplexity is dependent on this problem parameter.

The augmentation of the �eet size yields 
onversely to a lower exe
ution time for

T ≤ 2: for example, while the average exe
ution time on the RC instan
es with

1 vehi
le is 13.56 se
onds, it is only 7.47 se
onds for the same instan
es with 3

vehi
les. The average running times when T = 3 is however 12.77 se
onds for

K = 1, 14.96 se
onds for K = 2 and be
omes 48.89 se
onds for K = 3.
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Table 1. Summary of results on RC instan
es set

1 period 2 periods 3 periods

K λ objISH objM imp (%) t (s) objISH objM imp (%) t (s) objISH objM imp (%) t (s)

1 960 788.87 886.12 12.56 17.00 1450.75 1644.87 13.78 18.39 2020.87 2178.62 8.14 13.69

750 655.37 751.50 15.04 13.15 1221.12 1423.12 17.01 19.70 1747.37 1944.37 11.57 17.66

500 437.12 499.37 14.67 6.32 886.75 1011.00 14.13 13.26 1249.12 1441.50 15.45 14.96

250 211.75 240.37 13.65 1.29 420.00 509.62 22.05 2.92 635.87 747.75 17.91 4.77

2 960 1370.50 1470.37 7.36 16.49 2147.12 2184.25 1.77 9.73 2484.37 2529.87 1.86 16.49

750 1184.25 1284.62 8.52 19.54 1967.75 2060.12 4.83 12.10 2400.25 2461.62 2.60 16.77

500 813.00 937.37 15.43 12.92 1522.37 1714.5 12.69 14.62 2006.87 2190.37 9.36 17.46

250 401.37 443.75 10.93 2.70 759.75 906.87 19.59 5.78 1125.75 1342.62 19.36 9.12

3 960 1644.50 1695.87 3.19 8.12 2221.75 2231.00 0.41 6.23 2512.87 2539.25 1.04 68.22

750 1512.62 1586.87 5.05 9.51 2159.25 2209.25 2.41 6.30 2490.12 2532.87 1.72 56.67

500 1140.62 1260.00 10.47 10.34 1943.12 2053.87 5.76 8.48 2391.62 2474.62 3.52 48.7

250 585.25 629.00 7.58 2.78 1058.75 1278.62 21.32 5.99 1535.87 1761.00 15.17 21.97

4.4 Numeri
al results on TOPtw instan
es

The Solomon's TOPtw instan
es are used when the number of periods T equals

1. Table 2 provides the results obtained on these instan
es when the same param-

eters setting is used as in the multi-period version of the problem. 
olumns 1-3

give for ea
h instan
e its name, the number of vehi
les and the maximun route

duration λ. Column 4 provides the best known solution values while 
olumn 5

gives the best solutions obtained by our memeti
 algorithm with several parame-

ter settings. 
olumns objISH and objM indi
ate resp. the results obtained by the


onstru
tive heuristi
 and the memeti
 algorithm when the standard parameter

setting is used. The two next 
olumns give resp. the improvement a
hieved by

the standard memeti
 algorithm 
ompared to the 
onstru
tive heuristi
 (
olumn

imp.) and when 
ompared to the best known solutions (
olumn gap). the last


olumn shows the runing time (in se
onds) of the memeti
 algorithm.

The table shows that the algorithm is very fast with an average exe
ution

time of 5.27 se
onds. Although the memeti
 algorithm was 
on
eived to resolve

a more 
omplex problem, the TOPtw-PDP, it is also able to solve e�
iently the

TOPtw as a spe
ial 
ase. furthermore, the average deviation to the best known

results is less than 1%. When several parameters settings are used, the method

obtains 22 best known solutions among 27 on Solomon's R, C, RC 200 (indi
ated

with an asterisk in 
olumn 5 of table 2.
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Table 2. Results on solomon's instan
es R, C, RC 200

File K λ BK BR objISH objM imp(%) gap (%) t(s)


201 4 3390 1810 1810* 1810 1810 0 0 2.21


202 4 3390 1810 1810* 1800 1810 0.55 0 2.69


203 4 3390 1810 1810* 1810 1810 0 0 3.45


204 4 3390 1810 1810* 1810 1810 0 0 5.17


205 4 3390 1810 1810* 1810 1810 0 0 2.56


206 4 3390 1810 1810* 1810 1810 0 0 2.85


207 4 3390 1810 1810* 1810 1810 0 0 2.87


208 4 3390 1810 1810* 1810 1810 0 0 2.86

r
201 4 960 1724 1724* 1706 1722 0.93 -0.11 2.98

r
202 3 960 1724 1719 1628 1672 2.70 -3.01 5.16

r
203 3 960 1724 1724* 1620 1721 6.23 -0.17 5.32

r
204 3 960 1724 1724* 1721 1724 0.17 0 6.90

r
205 4 960 1724 1724* 1679 1719 2.38 -0.29 3.37

r
206 3 960 1724 1724* 1685 1709 1.42 -0.87 3.87

r
207 3 960 1724 1724* 1645 1712 4.07 -0.69 4.87

r
208 3 960 1724 1724* 1724 1724 0 0 6.67

r201 4 1000 1458 1458* 1428 1458 2.10 0 3.44

r202 3 1000 1458 1452 1375 1418 3.12 -2.74 5.63

r203 3 1000 1458 1458* 1430 1455 1.74 -0.20 8.77

r204 2 1000 1458 1436 1361 1401 2.93 -3.91 11.3

r205 3 1000 1458 1458* 1444 1456 0.83 -0.14 3.40

r206 3 1000 1458 1458* 1456 1458 0.13 0 4.47

r207 2 1000 1458 1436 1348 1399 3.78 -4.04 10.92

r208 2 1000 1458 1458* 1430 1438 0.55 -1.37 8.70

r209 3 1000 1458 1458* 1458 1458 0 0 3.86

r210 3 1000 1458 1458* 1423 1453 2.10 -0.34 5.49

r211 2 1000 1458 1436 1367 1410 3.14 -3.29 12.63

Average 1.44 -0.78 5.27

5 Con
lusion

This paper studies the Team Orienteering with Time Windows and Period De-

pendant Pro�ts (TOPtw-PDP), a new and 
hallenging problem for whi
h we

proposed a mathemati
al formulation. In order to solve medium and large in-

stan
es, a 
onstru
tive heuristi
 and a memeti
 algorithm are developed. The


omputational results 
ondu
ted on a large number of instan
es show the ef-

fe
tiveness of the memeti
 algorithm sin
e this later is able to a
hieve, within

very few se
onds, large improvements on the initial solutions, obtained with a


onstru
tive heuristi
. Future work would be dedi
ated to variants of the prob-

lems where several period-dependent time windows are to be 
onsidered for ea
h


ustomer in ea
h period.
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Abstract. Multi-caste ant algorithms allow the coexistence of different
search strategies, thereby enhancing search effectiveness in dynamic op-
timization situation. We present two new variants for a multi-caste ant
colony system that promote a better migration of ants between alterna-
tive behaviors. Results obtained with large and highly dynamic traveling
salesperson instances confirm the effectiveness and robustness of the ap-
proach. A detailed analysis reveals that one of the castes should adopt
a clearly exploratory behavior, as this minimizes the recovery time after
an environmental change.

Keywords: Ant Colony Optimization, Dynamic Traveling Salesperson
Problem, Multi-caste Ant Colony System, Traffic factor

1 Introduction

Ant Colony Optimization (ACO) encompasses a class of algorithms loosely in-
spired in the behavior of ants [4]. First developed to deal with the Traveling
Salesperson Problem, it has proven successful in a wide range of hard combina-
torial optimization problems [4]. Ant Colony System (ACS) [3] is one of the most
successful ACO variants and its main distinguishing feature is the existence of a
greedy decision rule adopted by artificial ants when building a solution for the
problem being solved.

ACS, as well as other ACO variants, depend on a set of parameters that
govern the way the search is conducted. Although beneficial, a careful adjustment
of the settings is far from trivial. Also, the ideal setting may change throughout
an optimization run, as the search conditions vary. In dynamic environments,
where the problem modifies over time, this situation is amplified. In a previous
work [15] we proposed a multi-caste framework that allows the coexistence of
different sets of parameter values, hence search strategies, inside a single ACS
algorithm. Also, although the total colony size is fixed, ants may migrate between
castes during the run, thereby favoring the specific search strategy that seems
to be more suitable at a given period. In [16], the multi-caste ACS was applied
to several Dynamic Traveling Salesperson Problem (DTSP) instances. Results
revealed that the adoption of different castes enhances the robustness of the

174



2 Leonor Melo, Francisco Pereira, Ernesto Costa

algorithm, even though the absolute best performance was usually achieved by
a standard ACS with an ideal fixed setting.

In this paper we extend the original framework by proposing two new multi-
caste variants. The goal is to foster an efficient migration of ants between castes,
thereby promoting a fast adaptation to the different scenarios that arise during
search. Also, we test our framework with larger DTSP instances, with over 1000
cities. Dynamism is inserted by modifying the travel cost between cities. Several
scenarios, differing in frequency and magnitude of change, are considered. Re-
sults show that the new multi-caste configurations are effective and outperform
both standard ACS with ideal fixed settings and previous multi-caste variants,
particularly in large DTSP instances.

The structure of the paper is the following: in section 2 we present the multi-
caste ACS used in our work. Section 3 describes the DTSP, whereas section 4
comprises a presentation of the optimization results and corresponding analysis.
Finally, section 5 gathers the conclusions and suggests directions for future work.

2 Multi-Caste Ant Colony System

While foraging, ants lay pheromones, a chemical signal, on the ground. This
will gradually guide ants towards promising trails, thereby leading to the emer-
gence of an indirect form of communication. Artificial ants belonging to ACO
algorithms mimic this behavior and rely on an artificial trail to share informa-
tion about the problem being solved. The optimization cycle of a general ACO
method comprises two main steps: first, each ant builds a solution biased by
pheromone values and specific heuristic information; afterwards, the pheromone
values of the artificial trail are updated to reflect the quality of the new solutions
found. This procedure is repeated until a termination criterion is satisfied.

2.1 Standard ACS

Ant System (AS) was the first ACO algorithm proposed [4]. Later on, ACS was
presented [3] with the aim of improving AS effectiveness. ACS differs from pre-
vious variants in three key issues (see the aforementioned references for details):
ants rely on a greedy decision rule to build the solutions, only the best ant is
allowed to update the artificial pheromone trail and a local pheromone updating
rule prevents the algorithm from excessive convergence. Parameter q0 controls,
in a probabilistic way, the amount of greediness the ants should use when con-
structing a solution. It is critical to the success of the ACS, as it balances the
relative importance given to exploitation vs. exploration.

There are several studies in the literature that report the limitation of relying
on ACS with fixed settings. In the static TSP, varying the parameter values as the
search progresses might lead to an overall performance enhancement [9]. Several
experiments reported in another study [15], reveal that the best parameter values
also depend on the instance being optimized. As for the DTSP, the analysis
described in [omitted reference] shows that distinct dynamic scenarios require
ACS algorithms with different q0 values.
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2.2 Multi-Caste ACS

In the multi-caste ACS, artificial ants are divided in several groups or castes.
Each group encodes its own q0 value, a parameter that strongly influences ACS
search behavior. The idea is to grant ACS with different strategies, allowing it
to select the best ant at any given search stage. Additionally, the alterations
introduced in the conventional ACS are minimal. Ants inherit the setting from
the caste to which they belong and, when applying the state transition rules, rely
on their specific q0 value. High q0 castes contain exploitive ants, whereas lower q0
castes are composed by more explorative ants, important to escape local optima
and recover from a modification in the dynamic environment. All colonies start
with the same number of ants and the total number of ants remains constant.
The term caste, when applied artificial ants, appeared for the first time in [1],
although no implementation was suggested.

When applying multi-caste ACS to a dynamic TSP we must ensure that,
whenever a change occurs, the solution found by the best-so-far ant is re-evaluated
using the new distance matrix. This is necessary since the same tour after
the change could be associated with a bigger travel distance. Keeping the old,
smaller, value would prevent algorithm from updating the best-so-far ant, thus
a sub-optimal solution would be used to update the trail.

In [15] two multi-caste variants were proposed:

const-multi-caste The dimension of the castes is fixed throughout the opti-
mization;

jump-multi-caste At the end of each iteration, two ants are selected at ran-
dom. If the ants belong to different castes and both castes have more than
20% of the total number of ants, the quality of their solutions is compared.
The ant with the worse solution jumps to the caste of the winning ant. The
idea behind this variant is to provide a simple method to dynamically adjust
the size of the castes, favoring those that in the current search status encode
the most promising q0 value.

These two variants proved to be robust and able to adapt to different dy-
namic scenarios, particularly the jump-multi-caste. However, they tend to be
outperformed by the conventional ACS with ideal settings. We hypothesize that
this might be due to the waste of resources (i.e., ants) in sub-optimal castes:
this happens either by keeping the caste’s size constant (const-multi-case) or
by an inefficient adjustment of the castes size when the optimization conditions
change (jump-multi-caste). To allow for a better change in the dimension of the
castes, i.e., to enforce a fast or more pronounced switch in the search strategy,
we propose two new jump variants. At the end of each iteration, one ant from
each caste is selected (independently of the castes size). If the ant with the worse
solution comes from a caste with, at least, 2 ants, it jumps to the caste of the
ant with the best solution. This simple rule allows a large concentration of ants
in promising castes and, at the same time, it prevents extinction. There are two
possible alternatives to select ants for the comparison:

super-jump-multi-caste One ant from each caste is selected at random.
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greedy-jump-multi-caste The best ant from each caste is selected.

3 Dynamic Travelling Salesperson Problem

When considering DTSP, two types of dynamism can be devised: adding / re-
moving cities to the problem or changing the cost between pairs of cities. Existing
ACO techniques for the DTSP are usually aimed to one of the two variants. In
our work, we adopt the second possibility, also known as DTSP with a traffic
factor [12]. For each pair of cities, i and j, eij = dij × fij , where dij is the orig-
inal distance between cities i and j, and fij is the traffic factor between those
cities. Every F evaluations a random number R in [FL, FU ] is generated prob-
abilistically. FL and FU are the upper and lower bounds for the traffic factor
and R represents the traffic at that moment. With a probability M each link
can change its traffic factor to fij = 1 + R, or otherwise, reset its traffic factor
to 1 (meaning no traffic). F and M represent the number of iterations between
changes (i.e., its frequency) and the magnitude of change, respectively.

To be able to compare the different algorithms, and since we know at which
time step changes occur, we use the offline performance [2], that consists on
the average of the best-since-last-change at each time step. To determine which
algorithm was more robust to change, i.e., had a smaller tour length immediately
after a change we also measure the average peak, as described in formula 1.

Q =
1

E

∑

i∈C


 1

T

T∑

j=1

Pij


 (1)

where C is the set of iterations immediately after a change, T is the number of
independent runs, and Pij is the best solution found at iteration i of run j.

3.1 Related Work

The existing ACO approaches for the DTSP cover both forms of dynamism:
adding / removing cities to the problem [6], [8], [7], [18], [11], [12] or changing
the cost between pairs of cities (inserting traffic jams) [5], [10], [14], [13]. Different
dynamic scenarios have been considered by ACO algorithms. Some of the most
relevant are:

– frequency of change: intervals between changes range from 20 iterations [11],
[14], [13], [12] to 750 iterations [8], [7], or somewhere in between [18]; further,
single or multiple changes can be considered [6], [5], [10];

– severity of change - from 0.5% [8], [7] to 75% [11], [12] of the cities added/removed;
from 1%[5], [10] to 75% [14], [13] of the links affected by traffic jams;

DTSP instances selected to test the algorithms are usually of moderate size,
varying between 25 ([5]) and 532 cities ([13]). No wide accepted benchmark
exists.
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The existing algorithms base their approaches mainly in: some sort of trail
equalization or adjustment ([6], [8], [5], [18]); a local search (KeepElitist) or other
transformation procedure applied to an ant or a group of ants when a change
occurs ([8], [7], [18], [11], [14], [12]); explicit memory ([7], [18], [14], [13]); an
immigrants scheme ([11], [14], [13], [12]). The approach described in [10] relies
on a rank based, Q-learning inspired variant of ACO.

configuration

difference between the numberof configurations that wereworse than this and the onesthat were better, for a 90%probability of change and 100iterations between changes

magnitude of change

number of iterations between changes

highest difference

lowest difference
average difference

Fig. 1. Example of how a performance table should be read

4 Experiments

We used the ACOTSP software [19], both to get the results for the standard
ACS and as the base for our own implementations. Unless otherwise noted, the
default values used for the experiments are: m = 10, β = 2, ρ = 0.1, ξ = 0.1,
τ0 = 1/(n ·Lnn) (where Lnn is the length of the tour using the nearest neighbor
heuristic [4], [19]), and the local search algorithm is the 3-opt. In multi-caste
configurations all castes have the same (initial) size. Different q0 values, ranging
from 0.1 to 0.99 were considered. Each experiment was repeated for 30 times.

Several TSP instances, with a number of cities between 532 and 1173, were
selected from the TSPLIB 95 [17] to construct our dynamic scenarios, as de-
scribed in section 3. For every instance we consider 20 dynamic scenarios (4
values of F× 5 values of M): F = {10, 20, 100, 200}, where F = 10 defines a
rapid changing environment and F = 200 represents a slow changing environ-
ment; M = {10, 25, 50, 75, 90}, with M = 10 and M = 90 establishing a small
and large degree of change, respectively. For each instance and M value, 900
distance matrixes were created (30 distance matrixes per run × 30 runs). Each
try was allowed to run for at least 30× F iterations.

For each dynamic scenario we compared each pair of configurations, using
the paired t-test with confidence level of 0.95 and 29 degrees of freedom. Then,
for each configuration c, we constructed a table (see figure 1). Let vf,m be the
value present in the cell at line f and column m: it represents the comparative
performance of the configuration c in a scenario where change occurs every f
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iterations and affects m/100 of the links, and is calculated as vf,m = #w −#b,
where w is the set of configurations that have an average offline performance
statistically larger (worse) than c, and b is the set of configurations with a sta-
tistically smaller (better) offline performance than c. The bigger the value vf,m
(the lighter the cell shading), the better that configuration performed when com-
pared to the others, in that scenario. In the remainder of this section, we identify
the ACS configurations according to the following convention:

– c99: standard ACS with q0 = 0.99;
– jx 99 (sjx 99, gjx 99): jump (super-jump, greedy-jump) dual-caste configu-

ration with q0 values of 0.x and 0.99 (eg.: sj50 99);
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Fig. 2. Comparative performance of the ACS variants for the att532 instance
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Although other configurations were tested (namely const-multi-caste, and
other q0 values), due to space constraints and for the sake of clarity, we con-
centrate our analysis on the best performing configurations. A global overview
of results can be consulted in figures 2, 3, 4 for instances att523, rat783, and
pcb1173(results for other TSP instances follow the same trend).The outcomes
clearly show the advantage of multi-caste variants over conventional ACS (please
note that the standard ACS used in the analysis is already the best fixed config-
uration for the DTSP instances under study). The performance improvement is
more evident, as the instances grow in size and in situations with a high degree
of dynamism (big and/or frequent changes). This is an expected result, as insist-
ing on the current trail when a considerable change just occurred (the typical
behavior of ACS with a high q0), is not a good strategy. The problem is even
more serious, if the time available to reach a new solution is limited.
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Fig. 5. Offline performance of the ACS variants on the att532 instance for the dynamic
scenario F = 100 and M = 25.

Focusing our analysis on the three jump variants, it seems that the new
super-jump and greedy-jump are more robust and effective than the original
jump-multi-caste. The aggressive rules used to resize castes that were proposed
in this paper lead to an efficient transfer of ants and allow for a faster recover
when a change in the environment happens. The differences in performance be-
tween super-jump and greedy-jump are minimal in the tests performed and their
behavior can be considered as equivalent. Overall the configurations gj01 99,
gj05 99, gj10 99, sj01 99, and sj05 99 have consistently very good results. It is
worth noting that the best multi-caste configurations keep a set of ants with
an extremely low q0. In concrete, 01 99 arrangements oscillate between two ex-
tremes, thereby adapting to different optimization scenarios: they can greedily
exploit the best solutions found before, but, as soon as change happens, they
quickly switch to an exploration mode.
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Fig. 6. Offline performance of the ACS variants on the pcb1173 instance for the dy-
namic scenario F = 100 and M = 25.

Figures 5 and 6 display the offline performance of the 19 configurations pre-
viously considered in a moderate (att532) and large (pcb1173) DTSP instances,
for a dynamic scenario obtained with F = 100 and M = 25 (the same trend
is visible for other scenarios). A comparative analysis of the figures confirms
our previous claims: the performance of the standard ACS deteriorates as the
instances grow in size and it is clearly outperformed by nearly all multi-caste
configurations in pcb1173. Also, within each variant, the relevance of specific q0
values is more visible in the larger instance.The advantage of having a caste with
a very low q0 is obvious in Figure 6.

Figures 7 and 8 show, for the same instances and dynamic scenarios, the
normalized average offline performance (peak) measured in the iteration imme-
diately after the change occurred (equation 1). As expected, conventional ACS
has higher peaks immediately after change, as the ants are highly influenced by
the current, possibly sub-optimal, trail. This holds true for most scenarios and
instances. In the larger instance, it is evident that the presence of a caste with
a low q0 enhances the ability of avoiding extreme peaks after change.

5 Conclusions

Multi-caste ACO algorithms allow for the coexistence of different search strate-
gies, thereby enhancing the plasticity and robustness of the method when solving
a difficult optimization situation. In this paper we proposed two new multi-caste
ACS variants that allow for a better migration of ants. This is particularly im-
portant in dynamic environments, where different scenarios appear over time.
Results obtained with DTSP instances show that the new variants are effective
and robust and outperform both the conventional ACS and previous multi-caste
configurations. The advantage of the new proposals is more evident, when DTSP
instances grow in size and when the degree of dynamism is higher. A noteworthy
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results is the need to maintain a caste with an extremely low q0 value (q0 ≤ 0.1),
that supervises the fast recovery of solutions when the environment changes.

All the tests reported in this paper dealt with dual-castes configuration. In
the near future, we aim to study the advantages and weaknesses of generalizing
our approach to a higher number of castes. Also, we intend to test this framework
in different dynamic optimization problems.
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Fig. 7. Average peak of the ACS variants on the att532 instance for the dynamic
scenario F = 100 and M = 25.
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scenario F = 100 and M = 25.
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Abstract. In this paper we propose a Beam-ACO approach for a combi-
natorial optimization problem known as the repetition-free longest com-
mon subsequence problem. Given two input sequences x and y over a
finite alphabet Σ, this problem concerns to find a longest common sub-
sequence of x and y in which no letter is repeated. Beam-ACO algorithms
are combinations between the metaheuristic ant colony optimization and
a deterministic tree search technique called beam search. The algorithm
that we present is an adaptation of a previously published Beam-ACO
algorithm for the classical longest common subsequence problem. The re-
sults of the proposed algorithm outperform existing heuristics from the
literature.

1 Introduction

The classical longest common subsequence (LCS) problem is a string problem
in which a problem instance (S,Σ) consists of a set S = {s1, s2, . . . , sn} of n
input strings over a finite alphabet Σ [7]. The problem is then about finding
a string being (1) as long as possible and (2) a subsequence of all the strings
in S. In this context, a string t is called a subsequence of a string s, if t can
be produced from s by deleting zero or more characters. For example, dga is a
subsequence of adagtta. A string that has both properties as described above
is called a longest common subsequence of the strings in S. The LCS problem
has applications in traditional computer science fields (such as data compression
and file comparison [13, 2]) but also, for example, in computational biology [12,
8]. Moreover, the LCS problem was shown to be NP-hard [10] for an arbitrary
number n of input strings.

The problem that we tackle in this work is a restricted version of the LCS
problem, the so-called repetition-free longest common subsequence (RFLCS) prob-
lem. Given exactly two input strings x and y over a finite alphabet Σ, the goal
is to find a longest common subsequence with the additional restriction that
no letter may appear more than once. This problem was introduced in [1] for
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the purpose of having a comparison measure for two sequences of biological ori-
gin. In the same paper, the authors proposed three heuristics for solving this
problem. These heuristics are up to now the only published algorithms for the
RFLCS problem in the literature. Other variants of the classical LCS problem
were studied, for example, in [5].

In contrast to the RFLCS, the classical LCS problem has already been subject
of a multitude of research works over the past decades. Apart from algorithms
based on dynamic programming and deterministic heuristics, the LCS has also
attrached researchers from the field of metaheuristics (see [11, 6, 9]). The lastest
one of the metaheuristic approaches for the LCS problem is Beam-ACO [3], a
metaheuristic approach which results from a combination of ant colony opti-
mization (ACO) with beam search (BS). In this work we adapt this Beam-ACO
approach to the RFLCS problem and show that the performance of the result-
ing algorithm is mostly superior to the performance of the heuristics from the
literature.

The organization of this paper is as follows. The proposed Beam-ACO ap-
proach is described in Section 2. Section 3 outlines the experimental evaluation.
Finally, in Section 4 conclusions and an outlook to future work are offered.

2 Beam-ACO

In the following we first describe the ACO-based framework of the proposed
algorithm. Afterwards, the BS component is presented. Note that the algorithmic
framework is exactly the same as the one described in [3]. The adapation of the
algorithm from the LCS to the RFLCS problem concerns the BS component.

Data Structures and Pheromone Model. The type of ACO algorithm which
was chosen for the algorithmic framework is a MAX -MIN Ant System im-
plemented in the hyper-cube framework (HCF) [4]. The pseudo-code is shown in
Algorithm 1. The algorithm requires the following data structures: (1) the best-
so-far solution T bs, i.e., the best solution generated by the algorithm over time;
(2) the restart-best solution T rb, i.e., the best solution generated since the algo-
rithm’s last restart; (3) the convergence factor cf, 0 ≤ cf ≤ 1, which is a measure
indicating the state of the convergence of the algorithm; and (4) the Boolean
control variable bs update, which assumes value true when the algorithm reaches
convergence.

One of the crucial components of any ACO algorithm is the pheromone model
T . In the context of this paper, T consists of a pheromone value 0 ≤ τx,i ≤ 1
for each position i of input sequence x (i ∈ {1, . . . , |x|}), and a pheromone value
τy,j for each position j of input sequence y (j ∈ {1, . . . , |y|}). Observe that a
pheromone value τx,i (respectively τy,j) indicates the desirability of adding the
letter at position i of string x (respectively, the letter at position j of string y)
to the solution under construction.

This pheromone model allows to represent solutions to the problem (that is,
repetition-free common subsequences) in a specific way. Note that any common
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subsequence t of strings x and y can be translated in a well-defined way into a
unique ACO-solution T = (X,Y ), where both X and Y are binary strings and
X is of length |x| while Y is of length |y|. Hereby, the meaning of X[i] = 1 is that
the letter at position i of string x (that is, x[i]) was chosen for the construction
of solution t, while X[i] = 0 means that x[i] was not chosen. The same holds,
for example, for Y [j] = 1, respectively Y [j] = 0. A solution t is translated into
T = (X,Y ) as follows: first, the position of the left-most occurrence of t[1] in x
(where t[1] is the first character of t) is determined, say k1. Then, all X[i] with
i < k1 are set to 0, while X[k1] := 1. Next, the position of the first occurrence of
t[2] in x after position k1 is determined, say k2. Then, all X[i] with k1 < i < k2
are set to 0, while X[k2] := 1. This is continued until all positions of t are treated.
Afterwards, the same procedure is applied to string y in order to produce Y .

Algorithmic Framework. The algorithm works as follows. First all pheromone
values are initialized to 0.5. Then, at each iteration, a probabilistic version of BS
based on pheromone values is applied. For a description of the BS component see
Section 2.1. BS generates a solution T pbs as output. Afterwards, a pheromone
update is performed in ApplyPheromoneUpdate(cf , bs update, T , T pbs, T rb, T bs).
Moreover, the current value of the convergence factor cf is determined. Depend-
ing on cf and the value of the Boolean variable bs update, a decision on whether
to restart the algorithm is made. In case of a restart, all pheromone values are
readjusted to 0.5. The stopping criterion of the algorithm is a maximum com-
putation time. As output upon termination, the algorithm provides the string
version tbs of the best-so-far ACO-solution T bs. The two remaining procedures
of Algorithm 1 are detailed in the following.

ApplyPheromoneUpdate(cf ,bs update,T ,T pbs,T rb,T bs): As a standard procedure,
three solutions are used for updating the pheromone values: T pbs, as generated
by BS in the current iteration, T rb, and T bs. The weight of each solution for
the purpose of the pheromone update is determined as a function of cf, the
convergence factor. The pheromone values τx,i corresponding to input string x
are updated as follows:

τx,i := τx,i + ρ · (ξx,i − τx,i) , (1)

where
ξx,i := κpbs ·Xpbs[i] + κrb ·Xrb[i] + κbs ·Xbs[i] , (2)

where κpbs is the weight of solution T pbs = (Xpbs, Y pbs), κrb the one of T rb =
(Xrb, Y rb), κbs the one of T bs = (Xbs, Y bs), and κpbs+κrb+κbs = 1. The weight
values that we chose are the standard ones shown in Table 1. Also, note that the
same pheromone update rule as described above is applied to the pheromone val-
ues τy,j corresponding to input string y. Finally, note that the algorithm works
with upper and lower bounds for the pheromone values, that is, τmax = 0.999
and τmin = 0.001. In case a pheromone values surpasses one of these limits, the
value is set to the corresponding limit. This has the effect that a complete con-
vergence of the algorithm is avoided.
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Algorithm 1 Beam-ACO for the RFLCS problem

1: input: x, y, kbw, µ ∈ Z+

2: T bs := null, T rb := null, cf := 0, bs update := false
3: Initialize all pheromone values to 0.5
4: while CPU time limit not reached do
5: T pbs := ProbabilisticBeamSearch(kbw,µ) {see Alg. 2}
6: if |tpbs| > |trb| then T rb := T pbs

7: if |tpbs| > |tbs| then T bs := T pbs

8: ApplyPheromoneUpdate(cf ,bs update,T ,T pbs,T rb,T bs)
9: cf := ComputeConvergenceFactor(T )

10: if cf > 0.99 then
11: if bs update = true then
12: Re-init. all pheromone values to 0.5, T rb := null, bs update := false
13: else
14: bs update := true
15: end if
16: end if
17: end while
18: output: the string version tbs of T bs

Table 1. Setting of κpbs, κrb, κbs, and ρ depending on the convergence factor cf and
the Boolean control variable bs update

bs update = false bs update

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8 = true

κpbs 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κbs 0 0 0 0 1

ρ 0.2 0.2 0.2 0.15 0.15

ComputeConvergenceFactor(T ): The formula that was used for computing the
value of the convergence factor is as follows:

cf := 2






∑
τ∈T

max{τmax − τ, τ − τmin}

|T | · (τmax − τmin)


− 0.5




This implies that at the start of the algorithm (or after a restart) cf has value
zero. On the other side, in the case in which all pheromone values are either at
τmin or at τmax, cf has a value of one. In general, cf moves in [0, 1].

2.1 BS Component

The probabilistic BS component which is applied in Procedure ProbabilisticBeam-
Search(kbw,µ) of Algorithm 1 works as follows (see also the pseudo-code in Algo-
rithm 2). Solutions are constructed from left to right, and partial solutions are
extended by appending exactly one letter at a time. The two input parameters
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Algorithm 2 Procedure ProbabilisticBeamSearch(kbw,µ) of Algorithm 1

1: input: x, y, kbw, µ
2: Bcompl := ∅, B := {∅}, tbsf := ∅
3: while B 6= ∅ do
4: EB := Produce Extensions(B)
5: EB := Filter Extensions(EB)
6: B := ∅
7: for k = 1, . . . ,min{bµkbwc, |EB |} do
8: za := Choose Extension(EB)
9: t := za

10: if UB(t) = |t| then
11: Bcompl := Bcompl ∪ {t}
12: if |t| > |tbsf| then tbsf := t end if
13: else
14: if UB(t) ≥ |tbsf| then B := B ∪ {t} end if
15: end if
16: EB := EB \ {t}
17: end for
18: B := Reduce(B, kbw)
19: end while
20: output: The ACO-version T pbs of argmax {|t| | t ∈ Bcompl}

of BS are kbw ∈ Z+, which is the so-called beam width, and µ ∈ R+ ≥ 1, which is
a parameter used to determine the maximal number of solution extensions that
may be chosen at each step. The algorithm maintains a set B (the beam) for
storing the current set of partial solutions. At the start B is initialized with the
empty string denoted by ∅. Let EB denote the set of all possible extensions of
the partial solutions in B. At each step, bµkbwc of these extensions are selected
based on a greedy function and the pheromone values. Hereby, complete (that
is, non-extensible) solutions are stored in Bcompl, and partial solutions are added
to set B in case the corresponding upper bound value (as computed by function
UB()) is greater than the length of the best-so-far solution tbsf. In order to final-
ize a step, B must be reduced in case it contains more than kbw partial solutions.
This is done on the basis of the upper bound values. More specifically, the best
partial solutions with respect to the upper bound values remain in B. In the
following the four different procedures of Algorithm 2 are outlined in detail.

Produce Extensions(B): Given the current beam B as input, this procedure gen-
erates a set EB of non-dominated extensions of all the partial solutions in B,
which is done as explained in the following. First, given a partial solution t, the
reduced alphabet Σt only contains letters which do not appear in t. Furthermore,
let x = x+ · x− be the partition of input sequence x into substrings x+ and x−

such that t is a subsequence of x+, and x− has maximal length. In the same
way, y+ and y− are defined. Given this partition, which is well-defined, position
pointers px := |x+| and py := |y+| are introduced. Moreover, the position of the
first appearance of a letter a ∈ Σt in strings x and y after the position point-
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ers px and py is well-defined and denoted by pax and pay. In case letter a ∈ Σt

does not appear in x (respectively y), pax (respectively pay) is set to ∞. In this
context, a letter a ∈ Σt is called dominated, if there exists at least one letter
b ∈ Σt, a 6= b, such that pbx < pax and pby < pay. Finally, Σt

nd ⊆ Σt denotes the
set of non-dominated letters of the reduced alphabet Σt with respect to partial
solution t. Observe also that letters in Σnd

t are required to appear at least once
in both x− and y−. Finally, set EB is generated as the set of subsequences ta,
where t ∈ B and a ∈ Σt

nd.

Filter Extensions(EB): The non-domination relation—as defined above—can also
be considered for extensions of different partial solutions of the same length. For-
mally, given two extensions ta, zb ∈ EB , where t 6= z but not necessarily a 6= b,
ta is said to dominate zb if and only if the position pointers concerning a appear
before the position pointers concerning b in the corresponding remaining parts
of the two input strings. Using this relation, EB is filtered in order to remove all
dominated elements.

Choose Extension(EB): This procedure handles the probabilistic choice of a par-
tial solution from EB , both on the basis of a greedy function and the pheromone
values. The greedy value of an extension ta ∈ EB is computed as follows:

η(ta) :=

(
pax − px
|x−| +

pay − py
|y−|

)−1
(3)

Instead of directly using these greedy values, we decided to use the corresponding
ranks instead. More specifically, the final greedy value ν(ta) of a partial solution
ta ∈ EB is calculated as the sum of the ranks of the greedy weights that corre-
spond to the construction steps that were performed to construct string ta. With
this definition of ν(), the probability for each ta ∈ EB is computed as follows:

p(ta|EB) =

(
min{τx,pax , τy,pay} · ν(ta)−1

)

∑
zb∈EB

(
min{τx,pbx , τy,pby} · ν(zb)−1

) (4)

Remember that pax was defined as the next position of letter a after position
pointer px in string x, and similarly for pay. The intuition of this forumla is as
follows: If at least one of the pheromone values τx,pax and τy,pay is low, the corre-
sponding letter should not yet be appended to the string, because there seems
to be another letter that should be appended first. Finally, each application of
function Choose Extension(EB) is either executed probabilistically, or determin-
istically (by choosing the option with the highest probability). The probability
for a deterministic choice, also called the determinism rate, is henceforth denoted
by q ∈ [0, 1].

Reduce(B, kbw): This procedure reduces B, if necessary, to exactly kbw elements,
based on their upper bound value. Given a partial solution t ∈ B, δ(x, a) (for all
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a ∈ Σt) evaluates to one, in case letter a appears at least once in x−. Otherwise,
δ(x, a) evaluates to zero. The same holds for δ(y, a). The upper bound value of
t ∈ B is then defined as follows:

UB(t) := |t|+
∑

a∈Σt

min {δ(x, a), δ(y, a)} (5)

Note that this upper bound function can be efficiently computed by keeping
appropriate data structures.

3 Experimental Evaluation

The experimental evaluation has been performed on a PC with an Intel i7 quad
core processor with 3 GHz and 8 GB of memory. First, we re-implemented the
two best heuristics for the RFLCS problem presented in [1]. These heuristics are
henceforth labeled A1 and A2, just like in the original paper. A1 is a determin-
istic heuristic which computes a longest common subsequence t (using dynamic
programming) of the input sequences x and y. Afterwards, all repetitions of let-
ters in t are deleted, maintaining of each letter excactly one occurrence. A2 is
a probabilistic heuristic which works as follows. Let n(x, a) denote the number
of occurrences of a letter a in string x. Moreover, let ma(x, y) be defined as
min{n(x, a), n(y, a)}. For each a ∈ Σ, if ma(x, y) = n(x, a) heuristic A2 picks
uniformly at random one occurrence of a in x. All other occurrences of a in x
are deleted. Otherwise, if ma(x, y) = n(y, a) heuristic A2 picks uniformly at ran-
dom one occurrence of a in y. Again, all other occurrences of a in y are deleted.
This results in sequences x′ and y′. Finally, A2 computes a longest common
subsequence of x′ and y′ and provides the result as output. As in the original
paper, A2 was applied 20 times to each problem instance, and the best result
was taken as the final result. Beam-ACO was applied once to each problem in-
stance (remember that results are averaged over 10 problem instances), with a
computation time limit of 5 CPU seconds per run, a beam width of 10, and
a determinism rate of q = 0.9. Note that the short computation time and the
standard parameter setting (without a tuning process) was chosen on purpose
in order to show that even an un-tuned Beam-ACO with a short running time
is able to outperform the existing heuristics.

Problem Instances. Two sets of problem instances were generated, following the
procedure as described in [1]. The first set (henceforth called Set1) consists for
each combination of input sequence length n ∈ {32, 64, 128, 256, 512} and al-
phabet size |Σ| ∈ {n/8, n/4, 3n/8, n/2, 5n/8, 3n/4, 7n/8} of exactly 10 problem
instances. The second set of instances (henceforth called Set2) is generated on
the basis of the alphabet size |Σ| ∈ {4, 8, 16, 32, 64} and the maximal repetition
of each letter rep ∈ {3, 4, 5, 6, 7, 8} in each input string. For each combination
of |Σ| and rep this instance set consists of 10 randomly generated problem in-
stances.
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Table 2. Experimental results concerning the instances of Set1.

|Σ| n Heuristic A1 Heuristic A2 Beam-ACO
result std time (s) result std time (s) result std time (s)

n/8

32 4.0 0.00 < 0.001 4.0 0.0 < 0.001 4.0 0.0 < 0.001
64 7.8 0.42 < 0.001 8.0 0.0 < 0.001 8.0 0.0 < 0.001

128 15.1 0.74 < 0.001 15.4 0.52 0.0016 16.0 0.0 0.0036
256 28.5 1.65 < 0.001 25.7 0.67 0.002 31.9 0.32 0.026
512 51.9 1.45 0.0028 40.7 1.25 0.01 62.3 0.82 1.78

n/4

32 6.8 0.63 < 0.001 7.6 0.52 < 0.001 7.9 0.32 < 0.001
64 12.4 0.84 < 0.001 12.8 0.79 < 0.001 14.3 1.34 0.01

128 21.5 0.97 < 0.001 20.3 1.06 0.002 25.3 0.48 0.21
256 35.2 2.15 < 0.001 30.3 1.64 0.0032 42.4 1.43 0.72
512 59.0 4.03 0.0012 45.5 1.96 0.01 68.0 3.13 0.78

3n/8

32 7.3 0.48 < 0.001 8.6 0.84 < 0.001 8.7 0.68 < 0.001
64 13.1 2.02 < 0.001 13.3 1.25 0.0012 14.4 1.17 0.0036

128 22.1 2.56 < 0.001 21.2 1.87 0.002 25.1 2.13 0.063
256 35.9 2.47 < 0.001 31.3 1.42 0.0052 39.7 2.31 0.24
512 53.7 1.25 0.0024 42.6 2.22 0.002 59.4 1.84 1.31

n/2

32 7.6 1.65 < 0.001 8.3 1.34 < 0.001 8.8 1.55 < 0.001
64 13.2 1.92 < 0.001 13.8 1.14 0.0012 14.5 1.08 0.046

128 21.9 1.20 < 0.001 21.0 0.94 0.0024 23.4 0.97 0.048
256 31.9 2.69 < 0.001 29.8 1.81 0.0044 34.1 2.28 0.17
512 49.8 2.25 0.0016 43.7 2.26 0.0124 53.1 3.14 0.588

5n/8

32 7.4 0.97 < 0.001 7.9 0.88 < 0.001 7.9 0.88 < 0.001
64 12.6 2.01 < 0.001 12.9 1.45 0.0012 13.7 1.64 0.0032

128 19.6 2.59 < 0.001 19.5 1.58 0.0016 21.1 1.91 0.0156
256 29.7 2.63 < 0.001 28.7 1.83 0.0068 31.1 2.73 0.15
512 45.8 2.66 0.002 42.0 1.15 0.014 47.8 1.93 0.328

3n/4

32 7.0 1.25 < 0.001 7.7 0.95 < 0.001 7.8 1.14 < 0.001
64 12.2 1.03 < 0.001 13.0 0.94 < 0.001 13.1 0.74 0.0048

128 18.7 1.84 < 0.001 18.5 1.43 0.0028 19.1 1.97 0.0088
256 29.0 2.00 < 0.001 28.5 1.96 0.004 30.0 1.94 0.06
512 43.6 2.12 0.002 41.9 1.60 0.015 44.7 1.77 0.47

7n/8

32 7.1 1.20 < 0.001 7.5 1.51 < 0.001 7.6 1.58 < 0.001
64 12.1 2.23 < 0.001 11.9 2.28 0.0012 12.2 2.15 0.002

128 18.0 1.94 < 0.001 17.7 1.34 0.0024 18.5 1.9 0.012
256 26.4 0.84 < 0.001 26.1 1.52 0.004 27.2 1.32 0.053
512 40.1 2.85 0.002 38.8 2.39 0.021 40.7 2.0 0.307

3.1 Results

The numerical results are presented in Table 2 (for Set1) and Table 3 (for Set2).
Each table row presents the results averaged over 10 problem instances of the
same type. For each algorithm (that is, A1, A2, and Beam-ACO) the results
are provided in three columns. The first one (with heading result) provides
the result of the corresponding algorithm averaged over 10 problem instances.
The second column (with heading std) gives information on the corresponding
standard deviation. Finally, the third column (with heading time (s)) provides
the computation time. In the case of A1 and A2 the provided data corresponds
to the total amount of computation time (averaged over 10 problem instances),
while Beam-ACO was applied for 5 CPU seconds to each problem instance and
column time (s) provides information on the time at which the best solution of
a run was found (again, averaged over 10 problem instances).
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Table 3. Experimental results concerning the instances of Set2.

|Σ| #reps Heuristic A1 Heuristic A2 Beam-ACO
result std time (s) result std time (s) result std time (s)

4

3 3.0 0.67 < 0.001 3.4 0.52 < 0.001 3.4 0.52 < 0.001
4 3.4 0.52 < 0.001 3.8 0.42 < 0.001 3.8 0.42 < 0.001
5 3.5 0.97 < 0.001 3.8 0.42 < 0.001 3.8 0.42 < 0.001
6 3.6 0.52 < 0.001 3.8 0.42 < 0.001 3.8 0.42 < 0.001
7 3.2 0.79 < 0.001 3.9 0.32 < 0.001 3.9 0.32 < 0.001
8 3.8 0.42 < 0.001 4.0 0.0 < 0.001 4.0 0.0 < 0.001

8

3 5.5 0.85 < 0.001 5.8 0.63 < 0.001 5.9 0.57 < 0.001
4 6.2 0.79 < 0.001 6.6 0.52 < 0.001 6.7 0.48 < 0.001
5 6.1 1.10 < 0.001 6.9 0.88 < 0.001 6.8 0.79 < 0.001
6 6.3 0.82 < 0.001 7.1 0.74 < 0.001 7.3 0.82 < 0.001
7 6.8 0.63 < 0.001 7.5 0.53 < 0.001 7.6 0.52 < 0.001
8 6.7 1.25 < 0.001 7.5 0.53 < 0.001 7.5 0.53 < 0.001

16

3 8.9 1.85 < 0.001 9.3 1.49 < 0.001 9.6 1.51 < 0.001
4 9.9 1.37 < 0.001 10.6 1.07 < 0.001 11.1 1.1 0.0016
5 12.0 1.63 < 0.001 12.3 1.16 < 0.001 13.7 1.25 0.21
6 10.8 1.55 < 0.001 11.9 1.37 < 0.001 13.0 1.49 0.0044
7 12.3 1.34 < 0.001 13.4 0.84 < 0.001 14.5 0.97 0.0072
8 12.0 1.15 < 0.001 13.5 0.71 0.0012 14.7 0.95 0.038

32

3 14.9 1.97 < 0.001 14.7 1.34 0.0012 16.1 1.45 0.042
4 16.9 1.91 < 0.001 17.1 1.20 < 0.001 19.2 1.55 0.013
5 17.8 1.69 < 0.001 18.0 0.82 0.0016 20.6 0.84 0.103
6 19.4 2.99 < 0.001 19.7 1.16 0.0016 24.0 2.11 0.45
7 21.2 1.62 < 0.001 20.5 0.53 0.0024 24.9 1.37 0.048
8 21.0 2.54 < 0.001 21.7 1.25 0.002 26.8 1.32 0.38

64

3 23.5 1.72 < 0.001 22.1 1.37 0.002 24.8 2.15 0.041
4 27.7 2.16 < 0.001 25.2 1.40 0.0032 30.1 1.37 0.14
5 30.4 2.12 < 0.001 27.0 1.25 0.0044 34.5 1.43 0.19
6 33.4 2.22 < 0.001 29.1 1.20 0.0048 38.4 1.78 0.407
7 36.9 3.45 0.0012 31.0 1.41 0.006 42.3 2.95 0.394
8 37.1 3.14 0.0015 32.0 1.49 0.0084 45.1 2.23 0.916

First of all, regarding the computation times, it can be observed that all
algorithms are very fast. In fact, even Beam-ACO usually finds the best solution
of a run in a fraction of a second. Concerning the results, we can observe that
Beam-ACO is nearly always superior (or equal) to both A1 and A2 on both
instance sets. This is with the exception of one single case in instance set Set2
(alphabest size 8, and maximally 6 repetitions of the same letter) where heuristic
A2 performs slightly better.

The graphics that are shown in Figures 1 and 2 help to appreciate the im-
provement of Beam-ACO over A1 and A2. Hereby, Figure 1 visualizes the im-
provement of Beam-ACO over A1, and Figure 2 visualizes the (possibly negative)
improvement of Beam-ACO over A2. The graphics in (a) (in both cases) con-
cern Set1, whereas the graphics in (b) concern Set2. For each combination of
sequence length and alphabet size (in the case of the graphics in (a)) and for
each combination of the alphabet size and the maximal number of repetitions
(in the case of the graphics in (b)) the size of the colored circle indicates the
improvement of Beam-ACO over A1 (respectively A2) in percent. The legend
links circle size with the scale of the percentages. Black circles indicate an im-
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Fig. 1. Percentage improvements of Beam-ACO over A1.

provement of Beam-ACO over A1 (respectively A2), while white circles indicate
that the corresponding heuristic was better than Beam-ACO.

Concerning a comparison of Beam-ACO with A1 on instances of Set1, the
graphic in Figure 1(a) indicates that Beam-ACO has important advantages over
A1 when the alphabet size is not too large. On the other side, when the alpha-
bet size is rather large in comparison to the sequence length, the improvement
of Beam-ACO over A1 decreases. Concerning Set2, the graphic in Figure 1(b)
indicates that Beam-ACO is generally much better than A1, with important
advantages of up to ≈ 25% improvement over A1 when the input sequences are
long and the alphabet size is rather large. Concerning the comparison between
Beam-ACO and A2, the graphics in Figure 2 show that Beam-ACO clearly out-
performs A2. For both instance sets Beam-ACO achieves up to 40 − 50% of
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Fig. 2. Percentage improvements of Beam-ACO over A2.

improvement over A2 in the most difficult cases. Summarizing we can say that
Beam-ACO is a new state-of-the-art method for the RFLCS problem.

4 Conclusions and Future Work

In this work we adapted a previously published Beam-ACO algorithm from
the classical longest common subsequence problem to the repetition-free longest
common subsequence problem. The results, in comparison to the best ones of
the heuristics from the literature, show that Beam-ACO generally outperforms
these heuristics, often even by a large margin.

Future work will include the development of a specific greedy function for
the RFLCS problem, with the aim of using it within the Beam-ACO algorithm.
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Moreover, we aim to either generate more difficult problem instances or to find
real-world instances which pose a challenge for the proposed algorithm.
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Abstract. This article extracts and analyzes local optima networks for
the permutation flow-shop problem. Two widely used move operators
for permutation representations, namely, swap and insertion, are incor-
porated into the network landscape model. The performance of a heuris-
tic search algorithm on this problem is also analyzed. In particular, we
study the correlation between local optima network features and the per-
formance of an iterated local search heuristic. Our analysis reveals that
network features can explain and predict problem difficulty. The evidence
confirms the superiority of the insertion operator for this problem.

1 Introduction

The number and distribution of local optima in a combinatorial search space are
known to impact the search difficulty on the corresponding landscape. Under-
stating these features can also inform the design of efficient search algorithms.
For example, it has been observed in many combinatorial landscapes that lo-
cal optima are not randomly distributed, rather they tend to be relatively close
to each other (in terms of a plausible metric) and to the known global opti-
mum; clustered in a “central massif” (or “big valley” if we are minimizing) [4,
11, 18]. Search algorithms exploiting this globally convex structure have been
proposed [4, 18].

A recently proposed model of combinatorial fitness landscape local optima
networks, captures in detail the distribution and topology of local optima in
a landscape. The model was adapted from the study of energy landscapes in
physics, which exist in continuous space [21]. In this network view of energy sur-
faces, vertices are energy minima and there is an edge between two minima if the
system can jump from one to the other with an energy cost of the order of the
thermal energies. In the combinatorial counterpart, vertices correspond to solu-
tions that are minima or maxima of the associated combinatorial problem, but
edges are defined differently, and are oriented and weighted. In a first version,
the weights represent an approximation to the probability of transition between
the respective basins in a given direction [6, 16, 23, 25]. This definition, although
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informative, produced densely connected networks and required exhaustive sam-
pling of the basins of attraction. A second version, escape edges was proposed in
[24], which does not require a full computation of the basins. Instead, these edges
account for the chances of escaping a local optimum after a controlled mutation
(e.g.1 or 2 bit-flips in binary space) followed by hill-climbing. This second type
of edges has, up to now, only been explored for binary spaces [24]. Also, previous
work on networks with both basin and escape edges considered a single move
operator on the corresponding search space.

This article extracts, analyzes and compares local optima networks of the
Permutation Flow-shop Problem considering two types of move operators com-
monly used for permutation representation, namely, insertion and exchange. The
article goes further and studies correlations among network features and the per-
formance of an iterated local search heuristic.

2 Methods

2.1 Permutation Flow-Shop Problem

This section describes the optimization problem, solution representation, and
move operators considered in this study.

Problem formulation. In the Permutation Flow-shop Problem (PFSP), a flow
of n jobs has to be scheduled for processing on m different machines in sequen-
tial order. Each of the n jobs will start at machine 1 and end at machine m.
Concurrency and preemption are not allowed. In other words, job i can not start
on machine j + 1 until machine j has completed it, and execution must run to
completion once started. For any operation, job i will require a given processing
time dij on machine j. Hence, a solution to the PFSP is a job processing order π,
i.e. a permutation of the sequence of n jobs, where π(i) denotes the ith job in the
sequence. The objective is to find the permutation πbest yielding the minimum
makespan, Cmax, which is defined as the earliest completion time of its last job,
πbest(n), on the last machine m.

Search operators. Several methods for solving the PFSP have been pro-
posed [19], many of which are based on local search heuristics. For those, the
choice of a move operator determines the topology of the search space [10].
We consider here two widely used operators for permutation representation.
Namely, the swap (or exchange) operator, and the the shift (or insertion) opera-
tor. Exchange(x, y) simply swaps the job at positions x and y, while Insert(x, y)
selects a job at position x and inserts it into position y, shifting all others jobs;
this operator is known to work well on the PFSP [22].

2.2 Local Optima Networks

This section overviews relevant definitions for building Local Optima Networks
with Escape Edges in the presence of a neutral fitness landscapes.
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A fitness landscape [20] is a triplet (S, V, f) where S, a search space, is the
set of all admissible solutions, V : S −→ 2|S|, a neighborhood structure, is the
function that assigns to every s ∈ S a set of neighbors V (s), and f : S −→ R is
a fitness function that maps the quality of the corresponding solutions.

Given a fitness landscape (S, V, f), a local optimum (LO), which is taken
to be a maximum here, is a solution s∗ such that ∀s ∈ V (s), f(s) ≤ f(s∗).

In our study, the search space is composed of job sequences π of length
n, therefore |S| = n!. The neighborhood is defined by the two selected move
operators, consequently |V (π)| = n(n − 1)/2 under the exchange operator and
|V (π)| = (n− 1)(n− 1) under the insertion operator. Finally, f(π) = −Cmax(π)
that is to be maximized.

A neutral neighbor of s is a configuration x ∈ V (s) with the same fitness
value f(x) = f(s); the size of the set Vn(s) = {x ∈ V (s) | f(x) = f(s)} gives
the neutral degree of a solution, i.e. how many neutral neighbors it has. When
this number is high, the landscape can be thought of as composed of several
sub-graphs of configurations with the same fitness value. This is the case for the
fitness landscape of PFSP [14].

A neutral network (connected sub-graph whose vertices are neutral neigh-
bors), also called a plateau, is a local optimum neutral network if all of its
vertices are local optima.

Algorithm 1: Stochastic Best-Improvement Hill-Climber

Choose initial solution s ∈ S ;
repeat

randomly choose s′ from {z ∈ V (s)|f(z) = maxx∈V (s) f(x)};
if f(s′) ≥ f(s) then

s← s′;

until s is in a Local Optimum Neutral Network ;

Since the size of the landscape is finite, we can mark the local optima neutral
networks as LONN1, LONN2, . . . , LONNn. These are the vertices of the local
optima network in the neutral case. In other words, we have a network whose
nodes are themselves networks.

Algorithm 1 finds the local optima and defines their basins of attraction [16].
The connections among optima represent the chances of escaping from a LONN
and jumping into another basin after a controlled move [24]. But in a neutral
landscape, the partition of solutions into basins of attraction is not sharp: Al-
gorithm 1 is a stochastic operator h and ∀s ∈ S there is a probability pi(s) =
P (h(s) ∈ LONNi). Therefore, the basin of attraction of LONNi is the set
bi = {s ∈ S | pi(s) > 0} and its size is

∑
s∈S pi(s) [25]. If we perturb a solu-

tion s ∈ LONNi by applying D random moves, we obtain a solution s′ that
will belong to another basin bj with probability pj , i.e. with probability pj ,
h(s′) will eventually climb to LONNj . The probability to go from s to bj is then
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p(s→ bj) =
∑

s′∈bj p(s→ s′)pj(s′), where p(s→ s′) = P (s′ ∈ {z | d(z, s) ≤ D})
is the probability for s′ to be within D moves from s and can be evaluated
in terms of relative frequency. Escaping from LONNi to the basin bj after
such a perturbation thus happens with probability wij = p(LONNi → bj) =

1
]LONNi

∑
s∈LONNi

pi(s)p(s→ bj). Notice that wij might be different from wji.

The Local Optima Network (LON) is the weighted graph G = (N,E)
where the nodes are the local optima neutral networks, and there is an arc
eij ∈ E with weight wij = p(LONNi → bj) between two nodes i and j if
p(LONNi → bj) > 0.

3 Local Optima Network Analysis

This section overviews the main topological features of the permutation flow-
shop local optima networks. Networks were extracted for instances with n = 10
jobs and m ∈ {5, 6, 7, 8, 9, 10} number of machines. Instances of the unstructured
(random) class were generated using the problem generator proposed by Watson
et al [26], which is based on the well-known Taillard benchmark [22]. For each
combination of n and m, 30 instances were generated and results are presented
through box-and-whiskers plots, to illustrate the distribution of the different
metrics.

Four LON models are considered, namely, combining two neighborhoods:
exchange and insertion, with two values of edge-escape distances: D = 1 and D =
2. For building the models, local optima are obtained using Algorithm 1 with,
respectively, exchange and insertion moves, whereas the escape-edges consider
the exchange move for the 4 models. The Algorithms were implemented in C++

using the “ParadisEO” library [5]; data analysis and visualization use R [17] with
the appropriate packages for network analysis and statistical computing.

Network size: Figure 1a shows that the number of local optima for all LON
models increases with the number of machines. This is consistent with the ob-
servation that increasing the number of machines (number of constraints) makes
the problem harder to solve. The number of optima does not depend on the
edges model (D = 1, D = 2), therefore, the two subplots in Figure 1a are ex-
actly the same. Figure 1a also indicates that the exchange LON model has a
larger number of nodes as compared with the insertion model, which confirms
that insertion is a better operator for the PFSP.

Figure 1b shows the density of edges, defined as the ratio of the LON number
of edges to such number in a complete graph. As expected, the LON models with
D = 2 are more dense. The density decreases with the number of machines for
all models, and it is higher for the insertion LONs.

Clustering coefficient: the clustering coefficient of a network is the average
probability that two neighbors of a given node are also neighbors of each other.
In the language of social networks, the friend of your friend is likely also to be
your friend. The standard clustering coefficient [15] does not consider weighted
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(b) graph density
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(c) weighted clustering coefficient
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(d) weight of self-loops
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(e) out-degree
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(f) disparity
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(g) average path length
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(h) distance to the global optimum

Fig. 1. Box-and-whiskers plots giving the distribution of LON features. Boxes comprise
the 0.25 and 0.75-quantiles, with a thick black line at the median value (i.e. the 0.50-
quantile). Whiskers extend for 1.5 times the inter-quantile range and define “outliers”
values, depicted as black dots.
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edges. We thus use the weighted clustering coefficient, CCw proposed by [3]. In a
random graph, the probability for links to form transitive closures would be the
same as the probability to draw any link. Therefore, the clustering coefficient
(CC) would be the same as the graph link density (De) [15]. By comparing the
LONs weighted clustering coefficients CCw on Figure 1c with their density of
edges on Fig. 1b, we see that CCw is higher on average than De. This suggests
that the LONs have a local structure. Moreover, by looking at the clustering
coefficient of un-weighted graphs (not presented here to save place), we notice
that the weighted clustering coefficient CCw is higher than the un-weighed co-
efficient, an evidence that high-probability transitions are more likely to form
triangular closures than low-probability transitions.

Transitions between optima: Figure 1d reports the average transition prob-
abilities of self-loops (wii) within the networks. For all LON models, this metric
decreases with the number of machines, and it is higher for the exchange oper-
ator. For all LON models, wii is on average higher than wij,j 6=i (not presented
here). This suggests that a hill-climber after a perturbation from LONNi is more
likely to remain in the same basin than to escape it and reach another basin.

Link heterogeneity: Figure 1e shows the LON’s average out-degree kout, i.e.
the average number of edges eij leaving a node i. As expected, the more dense
LON models (with D = 2) have higher out degree. For all models, this metric
increases with the number of machines.

Figure 1e shows the disparity measure Y2(i), which gauges the weight het-
erogeneity of the arcs leaving a node [3]. For all models, this metric deviates
from what would be expected in a random network, suggesting that the LON
out-going edges are not equiprobable, but instead have predominant directions.

Path lengths: Figure 1g reports the LON’s average path length. The length
associated to a single edge eij , is dij = 1/wij , which can be interpreted as the
expected number of random perturbations for escaping LONNi and entering
exactly the basin of LONNj . The length of a path, then, is simply the sum of all
the edge lengths in it. For all models, the path length increases with the number
of machines. Path lengths are longer for the exchange LON with D = 1. The
other LON models show short path lengths, specially for the insertion operator.
Additional evidence supporting the advantage of this operator.

Figure 1h shows the average length of shortest paths that reach the global
optimum starting from any other local optimum. This measure is clearly rele-
vant to search difficulty. Shortest paths to the optimum reveal easy to search
landscapes. Again, the insertion operator induces shortest distances, specially
when coupled with an escape intensity D = 2.

Mixing patterns: Figure 2a reports on the tendency of LON nodes to con-
nect to nodes with similar degree. Specifically, figure shows the Newman’s r
coefficient, a common measure of assortativity roughly equivalent the Pearson
correlation between the endpoints degree of all the existing links [15]. Degree
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(b) fitness correlation

Fig. 2. (a) Newman’s r coefficient of assortativity; (b) Spearman ρ correlation between
the fitness of a node and the weighted average of its neighbors’ fitness.

mixing is known to a have strong influence on the dynamical processes happen-
ing on complex network [2].

More interesting is to investigate mixing patterns with respect to the nodes
fitness values. Figure 2b shows the Spearman correlation coefficient between the
fitness of a LONNi and the average value of its neighbors LONNj fitnesses,
weighted by the respective transition probabilities wij,j 6=i. This measure is less
reliable on the small and dense LONs extracted from the insertion landscape,
but on the exchange LONs, it suggests a positive fitness-fitness correlation that
tends to increase with the number of machines. This might suggest that good
solutions tend to be clustered within the search space.

More general and more pronounced is the positive correlation, measured by
Spearman’s ρ statistic, between the fitness value of a node and the sum of the
weights of its incoming transitions. Considering all instances, ρ is in the 95%
confidence interval (0.78, 0.81), indicating that the higher the fitness of a LONN ,
the easier it is to reach it. This is consistent with results on other combinatorial
spaces displaying a positive correlation between fitness and basin size [7].

4 The Performance of Iterated Local Search

The network metrics studied in the previous section, suggest that the insertion
operator is preferable over the exchange operator, and that an escape distance
of 2 (D = 2) induces an easier to search landscape. In order to corroborate these
predictions, this section studies the performance of a heuristic search algorithm,
specifically, iterated local search, when running on the modeled PFSP instances.
Moreover, we show that it is possible to predict the running time of ILS using
multi-linear regression model based on LON features.

Iterated local search is a relatively simple but powerful strategy, which oper-
ates by alternating between a perturbation stage and an improvement stage. This
search principle has been rediscovered multiple times, within different research
communities and with different names. The term iterated local search (ILS) was
proposed in [12]. Algorithm 2 outlines the procedure.
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8 F. Daolio, S. Verel, G. Ochoa and M. Tomassini

Algorithm 2: Iterated Local Search

s0 ← Choose random initial solution s ∈ S;
s∗ ← LocalSearch(s0, op); // hill-climber using move operator op
repeat

s′ ← Perturbation(s∗, D); // D-moves of random swap

s′∗ ← LocalSearch(s′, op); // hill-climber using move operator op
if f(s′∗) > f(s∗) then

s∗ ← s′∗; // accept if better

until FE ≤ FEmax;

The LocalSearch procedure in Algorithm 2, corresponds to the stochastic
hill-climber given in Alg. 1. In our implementation, the two operators studied:
insertion and exchange can be used in this stage. The perturbation stage uses
only the exchange operator but with two different intensities of one or two op-
erator applications. Notice that Alg. 2 follows closely the structure of basins of
the search space, and thus, the LON models should explain the performance of
such ILS. Specifically, four ILS implementations are tested, namely, using inser-
tion and exchange in the local stage, and using one or two applications of the
exchange operator in the perturbation stage, which we denote D = 1 and D = 2.

Experimental setup: The same instances studied in Section 3 are considered,
i.e. unstructured (random) instances with n = 10 jobs and m ∈ {5, 6, 7, 8, 9, 10}
number of machines. The four variants of ILS (Algorithm 2 described above) are
tested. The maximum running time is set to FEmax = 0.2|S| = 0.2·10! = 725760
function evaluations. On each instance, independent runs are randomly restarted
1000 times upon termination, which occurs either on finding the global optimum
or on exhausting the FE budget.

For assessing the algorithms’ performance, we use the expected number of
function evaluations to reach the global optimum (Run-Length [9]), considering
independent restarts of the ILS algorithms [1]. This accounts for both the success
rate (ps ∈ (0, 1]) and the convergence speed. After (N − 1) unsuccessful runs
stopped at Tus-steps and the final successful one running for Ts-steps, the total
run-length would be T =

∑N−1
k=1 (Tus)k +Ts. Taking the expectation and consid-

ering that N follows a geometric distribution (Bernoulli trials) with parameter

ps, it gives: E(T ) =
(

1−ps

ps

)
E(Tus) + E(Ts), where E(Tus) = FEmax, the ratio

of successful to total runs is an estimator for ps, and E(Ts) can be estimated by
the average running time of successful runs.

Comparing the performance of ILS variants: Figure 3 compares the per-
formance of the four ILS variants. Figure 3a reports the estimated probability of
success, which is clearly superior for ILS variants with perturbation strength of
2 (D = 2). In this case the ILS algorithm solves all instances to optimality in the
median. For one perturbation (D = 1, in Fig. 3a), success rates are much lower,
specially for the exchange operator, where they decrease with increasing number
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(b) run-length with restarts

Fig. 3. Performance of Iterated Local Search: (a) success probability, (b) run-length.

of machines. A closer look at the performance of the ILS variants is appreciated
in Figure 3b, showing the estimated run-lengths. Run-lengths are much higher
for ILS variants with a single exchange (D = 1). For both D = 1 and D = 2,
the insertion operator produce shorter running lengths, although differences are
greater when a single perturbation is used. Finally, for all ILS variants, the run-
ning length tends to increase with the number of machines. These performance
observations, are consistent with the search difficulty predicted by the LON
metrics in Section 3.

Table 1. Spearman’s ρ statistic for the correlation between the estimated run-length of
ILS variants and the LON metrics by the respective move and perturbation. Nv nb of
local optima, CCw avg weighted clustering coeff., Fnn neighboring nodes fitness-fitness
corr., knn neighboring nodes degree-degree corr., r Newman’s assortativity, Lopt avg
shortest distance to the global optimum, Lv avg path length, Fsin fitness-strength(in)
corr., wii avg weight of self-loops, Y2 avg disparity of (out)links, kout avg (out)degree.

ILS/LON Nv CCw Fnn knn r Lopt Lv Fsρ wii Y2 kout

insertion D1 0.46 −0.221 0.199 0.078 0.238 0.634 0.40 −0.101 −0.31 −0.41 0.479
insertion D2 0.54 −0.209 0.316 −0.165 0.117 0.691 0.45 −0.167 −0.476 −0.46 0.55
exchange D1 0.535 −0.506 −0.004 0.142 0.353 0.624 0.536 −0.102 −0.235 −0.473 0.448
exchange D2 0.408 −0.255 0.22 −0.111 0.165 0.527 0.353 −0.035 −0.272 −0.434 0.409

Performance prediction: This section explores the correlations between the
LON metrics from Section 3 and the ILS performance presented above. More
precisely, Table 1 reports the rank-based Spearman’s ρ statistic between each
LON metric and the ILS estimated run-length, considering the natural pairings
of move operator and perturbation intensity between ILS variants and LON
models. In all cases, the higher the number of local optima (Nv) and, even more
importantly, the longer the average lengths of paths to the global optimum
(Lopt), the longer it takes for the iterated search to solve an instance to opti-
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10 F. Daolio, S. Verel, G. Ochoa and M. Tomassini

mality. Figure 4 shows such correlations, which are the highest observed. Other
scatter plots are less clear and are left out for reasons of space, but admittedly,
their interpretation would also be less straightforward.
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Fig. 4. Scatter plots of the estimated run-length versus different network metrics.

Finally, in order to investigate how the LON features could be used to predict
the search difficulty on the whole set of explored landscapes, we propose a set of
linear regression models having the estimated run-length as a dependent variable,
log-transformed after a preliminary analysis (log-likelihood of Box-Cox’s power
parameter). We perform an exhaustive search in the set of all possible regressors
subsets [13] and for each subset size we retain the best model according to
Mallow’s Cp statistic [8]. Results are given in Table 2. Interestingly, the number of
local optima Nv is never chosen; instead, the best single predictor is the average
length of the shortest paths to the global optimum Lopt, log-transformed, which
alone accounts for more than 57% of the observed run-length variance across the
PFSP instances under study.

Table 2. Exhaustive search among all regressors subsets for the multiple linear regres-
sion predicting the logarithm of estimated run-length as a function of the LON metrics.
For each number of predictors ]P , the best model in terms of Mallow’s Cp statistic is
given, along with its estimated regression coefficients and the resulting adjusted R2.

]P log(Nv) CCw Fnn knn r log(Lopt) log(Lv) Fsρ wii Y2 kout Cp adjR2

1 2.13 265.54 0.574
2 −5.18 1.43 64.06 0.675
3 1.481 0.895 −0.042 16.48 0.700
4 −2.079 1.473 0.540 −0.032 8.75 0.704
5 −2.388 −1.633 1.470 0.528 −0.030 5.97 0.706
6 −2.532 −1.722 1.469 0.472 −1.405 −0.028 3.75 0.707
7 −2.772 −1.986 1.461 0.427 −1.497 −0.408 −0.029 5.02 0.707
8 −2.748 −0.188 −2.078 1.464 0.452 −1.579 −0.515 −0.029 6.39 0.707
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5 Conclusions

This article extracts and analyzes, for the first time, the local optima networks of
the permutation flow-shop problem. The LON model with the so-called escape-
edges, which account for the chances of escaping a local optimum after a con-
trolled perturbation (1 or 2 random exchanges in our implementation), is ex-
tended to landscapes with neutrality. Two move operators, widely used for per-
mutation representations (exchange and insert), are considered and contrasted.

LONs induced by the insertion operator present fewer nodes (i.e. fewer local
optima), and shortest distances both among nodes and from any node to the
global optimum. This evidence supports the superior performance of the inser-
tion over the exchange move as reported in the literature. The LON models with
D = 2 produce shortest distances among nodes, and from any node to the global
optimum, compared to models with D = 1. Therefore a local search heuristic
using the insertion operator for adaptive walks and several kicks of the exchange
operator to escape local optima, should perform well on these PFSP instances.

Indeed, four iterated local search variants were implemented and tested,
which resemble the considered LON models. Among these, the ILS with insertion
in the improvement stage and two exchanges in the perturbation stage, produced
the best performance. This confirms the intuitions from the LON model metrics.
Actually, not only the LON metrics correlate with the search performance, but
also the ILS running time can be estimated using the LON features.

Future work will explore larger problems, which requires sampling to extract
the LON models, and additional permutation flow-shop instance classes, such as
machine-correlated and mixed-correlated instances [26]. The ultimate goal is to
derive easy-to-compute landscape metrics that can predict the performance and
guide the design of heuristic search algorithms when solving difficult combina-
torial problems. This article is an additional step in this direction.

References

1. Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolu-
tionary algorithm. In: Evolutionary Computation, 2005. The 2005 IEEE Congress
on. vol. 2, pp. 1777–1784. IEEE (2005)

2. Barrat, A., Barthlemy, M., Vespignani, A.: Dynamical processes on complex net-
works. Cambridge University Press (2008)
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Abstract. We study the linear convergence of a simple pattern search
method on non quasi-convex functions on continuous domains. Assump-
tions include an assumption on the sampling performed by the evolu-
tionary algorithm (supposed to cover efficiently the neighborhood of the
current search point), the conditioning of the objective function (so that
the probability of improvement is not too low at each time step, given a
correct step size), and the unicity of the optimum.

1 Introduction

Continuous evolutionary algorithms are well known for robust convergence. How-
ever, most proven results are for simple objective functions, e.g. sphere functions
[1]. Results also include compositions with monotone functions (so that not
only convex functions are covered), but the considered objective functions are
nonetheless still almost always quasi-convex (i.e. sublevel sets are convex), as well
as most derivative free optimization algorithms [4], whereas nearly all testbeds
are based on more difficult functions [7, 11]. Extensions to non quasi-convex func-
tions are still rare [12] and limited to convergence (i.e.: asymptotically we will
find the optimum). We here extend such results to linear convergence (i.e. the
precision after n iterations is O(exp(−Ω(n))).There are works devoted to uni-
modal objective functions, without convexity assumptions [6], but such works
are in the discrete domain and do not say anything for the linear convergence on
continuous domains. All in all, only one of the six objective functions of Fig. 1
is covered by existing results, in terms of linear convergence.

In this paper, we prove linear convergence of a simple pattern search method
with derandomized sampling on non quasi-convex families of functions. Section 2
presents the framework, and the assumptions under which our results hold. Sec-
tion 3 is the mathematical analysis, under this set of assumptions. Section 4
presents the application to positive definite quadratic forms: it shows that the
family of quadratic forms with conditioning bounded by some constant verifies
our set of assumptions, and therefore that our evolution strategy with deran-
domized sampling has linear convergence rate on such objective functions. Inci-
dentally, this section emphasizes the critical underlying assumptions for proving
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Fig. 1. Six graphical representations of easy objective functions; only the first one
(sphere) is covered by existing linear convergence results. Even the sixth one (ellipsoids)
is not included in published linear convergence results. We extend to all functions
verifying Eqs. 1-6 (see these equations in text), including all functions presented here.
We present assumptions under which our results hold in Section 2, the main result in
Section 3, and we will show in details that the sixth case above (quadratic functions)
is covered by the result in Section 4 (but case 1 is a special case of case 6, and cases 2,
3, 4, 5 can be tackled similarly). [12] provides other examples, with different but very
related assumptions; their examples are also covered by our theorem.

the result, suggesting extensions to other families of fitness functions. Section 5
concludes and discusses limitations and further work.

2 A Simple Pattern Search Method

We consider an evolutionary algorithm as in Alg. 1. As the sampling is de-
randomized, we might indeed call this algorithm a pattern search method. We
assume the followings.

The Objective Function

We assume that the function f has a unique minimum. Without loss of generality,
we assume that the objective function verifies f(0) = 0 and that this is the
minimum. The considered algorithms are invariant by transition or composition
with monotone functions, so this does not reduce the generality of the analysis.

Conditioning

We assume that
K ′||x|| ≤ f(x) ≤ K ′′||x|| (1)

for all x in Rd and for some constants K ′ > 0 and K ′′ > 0. We point out
that, as we consider algorithms which are invariant under transformations of the
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Linear Convergence of Evolution Strategies 3

Algorithm 1 The Simple Evolution Strategy. In case there is no unicity for
choosing x′, any breaking tie solution is ok. (c) refers to the counting operation,
which will be important in the proof. [[1, k]] stands for the integer set {1, . . . , k}.

Initialize x ∈ Rd
Parameters k ∈ N∗, δ1, . . . , δk ∈ Rd, σ ∈ R∗+, k1 ∈ N∗, k2 ∈ N∗
for t = 1, 2, 3, . . . do

// just for archiving
Xt ← x

// mutations
For i ∈ [[1, k]], xi ← x+ σδi

// useful auxiliary variables
n← number of xi such that f(xi) < f(x) (c)
x′ ← xi with i ∈ [[1, k]] such that f(xi) is minimum

// step-size adaptation
if n ≤ k1 then
σ ← σ/2

end if
if n ≥ k2 then
σ ← 2σ

end if

// win: accepted mutation
if k1 < n < k2 then
x← x′

end if
end for
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objective function by composition with monotonic functions, this assumption is
not so strong as a constraint and quadratic positive definite forms with bounded
condition number are in fact covered (their square root verifies Eq. 1).

Good Sampling

Here we use the derandomized sampling assumptions (Eqs. 2-6), which are cru-
cial in our work. This sampling is deterministic, as in pattern search methods
[4]. We assume that for some 0 < b < b′ ≤ 2b′ ≤ c′ ≤ c, 0 < η < 1 and ∀x ∈ Rd,

σ too large: σ ≥ b−1||x||
⇒ #{i ∈ [[1, k]]; f(x+ σδi) < f(x)} ≤ k1 (2)

σ small enough: σ ≤ b′−1||x||
⇒ #{i ∈ [[1, k]]; f(x+ σδi) < f(x)} > k1 (3)

σ large enough: σ ≥ c′−1||x||
⇒ #{i ∈ [[1, k]]; f(x+ σδi) < f(x)} < k2 (4)

σ too small: σ ≤ c−1||x||
⇒ #{i ∈ [[1, k]]; f(x+ σδi) < f(x)} ≥ k2 (5)

Perfect σ: b′
−1||x|| ≤ σ ≤ c′−1||x||

⇒ ∃i ∈ [[1, k]]; f(x+ σδi) ≤ ηf(x) (6)

Discussion on Assumptions

Assumptions 2, 3, 4, 5, 6 basically assume that the sampling is regular enough
for the shape of the level sets. For example, the finite VC-dimension of ellipsoids
ensure that, when the conditioning is bounded, quadratic functions verify the
assumptions above (and therefore the theorem below) with arbitrarily high prob-
ability if δ1,. . . ,δk are randomly drawn and if k is large enough. Importantly, the
critical assumption in the derandomization is that all iterations have the same
δ1, . . . , δk. This will be developed in Section 4.

Assumptions 6 and 1 use the fitness values; but they just have to hold for
one of the fitness values obtained by replacing f with g ◦ f with g a monotone
function.

3 Mathematical Analysis

Main Theorem: Assume Eqs. 1-6. There exists a constant K, depending on
η,K ′,K ′′,maxi ||δi|| only such that for index t sufficiently large

ln(||Xt||)/t ≤ K < 0 (7)
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(with ln(0) = −∞) where the sequence of Xt is defined as in Alg. 1.

B

B

A

C

C

Fig. 2. The linear convergence proof in a nutshell. X-axis: − ln(||x||). Y-axis: l =

ln( ||x||
σ

). At each iteration, either case A holds: then the iteration is for sure an im-
provement by a factor at least η, or case B holds: the iteration can be an improvement
or not; if not, the point is moved towards case A by ln(2) upwards or downwards, or
case C holds: then x is moved upwards (if it is at the bottom) or downwards (if it
is at the top). This ensures that after finitely many time steps we go back to case A
unless there is a “win” by case B in the mean time. The crucial point for the proof is
that each “win” is an improvement by least a controlled factor η, so that the slope of
“win” arrows is bounded, so that there is linear convergence and not only an infinite
sequence of “small” improvements.

Proof: First, we briefly explain and illustrate the proof, before the formal proof
below. The proof is sketched in Fig. 2. At each iteration t, we are at some point in
the figure; the x-axis is − ln(||x||) (equivalent to − ln(f(x)), by Eq. 1), the y-axis

is l = ln
(
||x||
σ

)
. The step-size adaptation ensures that if we are at the bottom

(l ≤ ln(b)), we go upwards; if we are at the top (l ≥ ln(c)), we go downwards.
Between l = ln(b) and l = ln(c), everything can happen; but if there’s no “win”
case in the mean time, we will arrive between l = ln(b′) and l = ln(c′), where
a win is ensured. As steps are fast, this can not take too much time (if there is
no “win”, l increases by ln(2) or decreases by ln(2) in direction of the “forced
win” range [ln(b′), ln(c′)]). This will be formalized below. c′ ≥ 2b′ ensures that
the algorithm can not jump from l < ln(b′) to l > ln(c′) or from l > ln(c′) to
l < ln(b′). Therefore there is necessarily a “win” in the mean time. Eq. 6 ensures
that wins provide a significant improvement.

We now write the proof formally. Consider an iteration of the algorithm,
with n the number of mutations i with f(x+ σδi) < f(x) (as defined in Alg. 1,
Eq. (c)).
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6 Jérémie Decock and Olivier Teytaud

Define l = ln
(
||x||
σ

)
. Eqs. 2-6 can be rephrased as follows:

l ≤ ln(b)⇒ #{i ∈ [[1, k]]; f(x+ σδi) < f(x)} ≤ k1 (8)

l ≥ ln(b′)⇒ #{i ∈ [[1, k]]; f(x+ σδi) < f(x)} > k1 (9)

l ≤ ln(c′)⇒ #{i ∈ [[1, k]]; f(x+ σδi) < f(x)} < k2 (10)

l ≥ ln(c)⇒ #{i ∈ [[1, k]]; f(x+ σδi) < f(x)} ≥ k2 (11)

ln(b′) ≤ l ≤ ln(c′)⇒ ∃i ∈ [[1, k]]; f(x+ σδi) ≤ ηf(x) (12)

Define x′ as in Alg. 1. We get the following behavior:

– Forced increase: if l ≤ ln(b), then n ≤ k1; σ is divided by 2, and l is increased
by ln(2) (Eq. 8). This is a case C in Fig. 2.

– Forced decrease: if l ≥ ln(c), then n ≥ k2; σ is multiplied by 2, and l is
decreased by ln(2) (Eq. 11). This is a case C in Fig. 2.

– Forced win: if ln(b′) ≤ l ≤ ln(c′), then x ← x′; this is the “sure win”
case (Eq. 12); l can be increased (at most by maxi ||δi||) or decreased (by
∆ = ln(||x||/||x′||)). This is a case A in Fig. 2.

Importantly, these 3 cases do not cover all possible cases; ln(c′) < l < ln(c) and
ln(b) < l < ln(b′) are not covered in items above. These two remaining cases are
termed case B in Fig. 2.

Step 1: Showing that there are infinitely many wins.

The two first lines above (case l ≤ ln(b) and case l ≥ ln(c)) ensure that if l is
too low or too high, it eventually comes back to the range [ln(b′), ln(c′)] (where
a win necessarily occurs), unless there is a win in the mean time (in the range
[ln(b), ln(c)] where wins are not sure but are possible). Importantly, l can increase
or decrease by ln(2) at most; so the algorithm can not jump from less than ln(b′)
to more than ln(c′). This ensures that infinitely often we have a win x ← x′.
But we want linear convergence. Therefore we must consider how many steps
there are before we come back to a “win”, and how large are improvements in
case of “win”.

Step 2: showing that “wins” are big enough.

In all cases of “win”, i.e. k1 < n < k2, with ∆ = ln(||x||/||x′||), we know that

f(x′) ≤ ηf(x) and f(x′) ≤ K ′′||x′|| ≤ K′′

K′
||x′||
||x|| f(x) so that ln(f(x)) is decreased

by at least
max(ln(1/η), ln(K ′/K ′′) +∆). (13)

After a “win”, with l′ = ln
(
||x′||
σ

)
,

– if l′ ≤ ln(b′), then the number of iterations before the next win is at most
z = 1 + ln( cb )∆/ ln(2), because l′ ≥ ln(b) − ∆ ≥ ln(b′) − ln(b′/b) − ∆ ≥
ln(b′)− ln(c/b)−∆ and forced increase are by steps of at least ln(2).
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– if l′ ≥ ln(c′), then the number of iterations before the next win is at most
z = 1+ln( cb ) maxi ln(||δi||)/ ln(2), because l′ ≤ ln(c)−maxi ln(δi) ≤ ln(c′)−
ln(c′/c) − maxi ln(δi) ≤ ln(c′) − ln(c/b) − maxi ln(δi) and forced decreases
are by steps of at least ln(2).

– less than in both cases above, otherwise.

In both cases, Eq. 13 divided by z is lower bounded by some positive constant

ProgressRate

= Eq. 13 divided by z

=
max(ln(1/η), ln(K ′/K ′′) +∆i)

min(1 + ln(c/b)∆i/ ln(2), 1 + ln(c/b) maxj ln(||δj ||)/ ln(2))
. (14)

Step 3: summing iterations.

Eq. 14 is the progress rate between two wins, after normalization by the number
of steps between these two wins. Hence if t > n0,

ln(f(Xt)) ≤ ln(f(X1))− (t− n0)×
∑

i

max(ln(1/η), ln(K ′/K ′′) +∆i)

min(1 +∆i/ ln(2), 1 + maxj ln(||δj ||)/ ln(2))
(15)

where the summation is for i index of an iteration t with a “win”, and n0 is
the number of initial iterations before a “win” (i.e. n0 depends on the initial
conditions but it is finite).

Eq. 15 yields the expected result.
This result would be void if there was no algorithm and no space of functions

for which assumptions 1-6 hold. Therefore, next Section is devoted to showing
that for the important case of families of quadratic functions with bounded
conditioning, assumptions 1-6 hold, and therefore the theorem above holds.

4 Application to Quadratic Functions

This section shows an example of application of the theorem above. The main
strength of our results is that it covers many families of functions; yet, Eqs. 1-
6 are not so readable. We show in this section that a simple family of fitness
functions verify all the assumptions.

We consider the application to positive definite quadratic forms with bounded
conditioning, i.e. we consider f ∈ F with F the set of quadratic positive definite
objective functions f such that

maxEigenV alue(Hessian(f))

minEigenV alue(Hessian(f))
< cmax <∞. (16)

Notably, thanks to the use of VC-dimension, the approach is indeed quite generic
and can be applied to all families of functions obtained by rotation/translation
from fitness functions in Fig. 1.
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Instead of working on Q directly, with x 7→ Q(x−x∗) a quadratic form with
Q positive definite with optimum in 0, we work on x 7→

√
Q(x− x∗), so that

Eq. 1 is verified; as considered algorithms are invariants by composition with
monotone functions, this does not change the result.

We assume that δ1, δ2, . . . , δk are independently uniformly randomly drawn
in the unit ball B(0, 1). From now on, we note p = px,σ,f the probabil-
ity that f(x + σδi) is in E = f−1([0, f(x)[), and p̂ = p̂x,σ,f the frequency
1
k

∑k
i=1 1x+σδi∈E . We will often drop the indices for short.

The assumptions in Section 2 essentially mean that frequencies are close
to expectations for x + σδi ∈ f−1([0, f(x)[) and x + σδi ∈ f−1([0, ηf(x)[),
independently of x, σ, f . This is typically a case in which VC-dimension [14]
can help.

The purpose of this section is to show Eqs. 1-6, for a given family of functions,
namely the family F defined above; by proving Eqs. 1-6, we show the following.

Corollary: Assume that the δi are uniformly randomly drawn in the unit ball
B(0, 1). Assume that F is the set of quadratic functions with minimum in 0
(f(0) = 0) which verify Eq. 16 for some cmax <∞. Then, almost surely on the
sequence δ1, δ2, . . . , δk , for k large enough and some parameters k1 and k2 of
Alg. 1, then Eqs. 1-6 hold, and therefore for some K < 0, for all t > 0,

ln(||Xt||)/t ≤ K (17)

with ln(0) = −∞ and where the sequence of Xt is defined as in Alg. 1.

Proof: We use the main theorem above for proving Eq. 17, so we just have to
prove that Eqs. 1-6 hold.

Step 1: using VC-dimension for approximating expectations by fre-
quencies. Thanks to the finiteness of the VC-dimension of quadratic forms
(see e.g. [5]), we know that for all ε > 0, almost surely in δ1, δ2, . . . , δk, for all
δ > 0 and k sufficiently large, with probability at least 1− δ,

sup
x,f,σ>0

|p̂x,σ,f − px,σ,f | ≤ ε/2 (18)

where x ranges over the domain, f ranges over F .
For short, we will often drop the indices, so that Eq. 18 becomes Eq. 19:

sup
x,f,σ>0

|p̂− p| ≤ ε/2 (19)

The important point here is that this result is a uniform result (uniform on
f ∈ F ); this is not just a simple law of large numbers, it is a uniform law of large
numbers, so that it is not a mistake if there is a supremum on x, σ, f . Almost
surely, the supremum is bounded; it is not only bounded almost surely for each
x, σ, f separately, and this is the key concept in this proof.
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Step 2: showing that σ small leads to high acceptance rate and σ
high leads to small acceptance rate. Thanks to the bounded conditioning
(Eq. 16), there exists ε > 0 s.t.

s <
1

2
s′ (20)

with s = sup

{
σ

||x|| ;σ,x, f s.t. p ≥ ε

2

}

and s′ = inf

{
σ

||x|| ;σ,x, f s.t. p <
1

2
− ε

2

}

because s→ 0 as ε→ 0 and s′ →∞ as ε→ 0.
Eq. 20 implies

sup

{
σ

||x|| ;σ,x, f s.t. p̂ ≥ ε
}
≤ sup

{
σ

||x|| ;σ,x, f s.t. p̂ ≥ ε

2

}
(21)

and
1

2
s′ ≤ 1

2
inf

{
σ

||x|| ;σ,x, f s.t. p̂ <
1

2
− ε
}
. (22)

So, Eqs. 21, 22 and 19, with k large enough, imply

sup

{
σ

||x|| ;σ,x, f s.t. p̂ ≥ ε
}
<

1

2
inf

{
σ

||x|| ;σ,x, f s.t. p̂ <
1

2
− ε
}
. (23)

Eq. 23 provide k1, k2, c′ and b′ as follows for Eqs. 4 and 3:

1

b′
= 2 sup

{
σ

||x|| ;σ,x, f s.t. p̂ ≥ ε
}

1

c′
=

1

2
inf

{
σ

||x|| ;σ,x, f s.t. p̂ <
1

2
− ε
}

k1 = bεkc

k2 =

⌈
(
1

2
− ε)k

⌉

ε < 1
10 (due to step 1), and Eqs. above imply c′ ≥ 2b′.

Step 3: showing that k large enough and σ well chosen leads to at least
one mutation with significant improvement. Similarly, k large enough
yield

b−1 = sup

{
σ

||x|| ;σ,x, f s.t. p̂ > k1/k

}
,

c−1 = inf

{
σ

||x|| ;σ,x, f s.t. p̂ < k2/k

}
,
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10 Jérémie Decock and Olivier Teytaud

which provide Eqs. 5 and 2 with b < c thanks to ε < 1
10 (ε was chosen with

ε < 1
10 in step 1). Eqs. 2-5 then imply b < b′ and c′ < c.

We now have to ensure Eq. 6. Equations Eq. 1-5 are proven above for k
sufficiently large; from now on, we note q = qx,σ,f the probability that f(x+σδ1)

is in E′ = f−1([0, ηf(x)[), and q̂ = q̂x,σ,f the frequency 1
k

∑k
i=1 1x+σδi∈E′ . For

showing Eq. 6, let us assume

b−1 ≤ σ

||x|| ≤ c
−1;

this implies q > ε0 for some ε0 > 0; so for k sufficiently large for ensuring
supσ,x,f |qx,σ,f − q̂x,σ,f | ≤ ε0/2, by VC-dimension, we get q′ ≥ ε0/2 > 0, which
implies that at least one δi verifies x+ δi ∈ E′. This is exactly Eq. 6.

Step 4: concluding. We have shown Eqs. 1-6 for square roots of positive
definite quadratic normal forms with bounded conditioning. Therefore, the main
theorem can be applied and leads to Eq. 17.

5 Discussion and Conclusion

This work provides, to the best of our knowledge, the first proof of linear conver-
gence of evolutionary algorithms (here, the Simple Evolution Strategy in Alg. 1)
in continuous domains on non quasi-convex functions. Indeed, even the applica-
tion to quadratic positive definite forms is new. This proof is for derandomized
samplings only, which means that the mutations δi, before multiplication by
the step-size which obviously varies, are constant. A main missing point for an
application is the evaluation of the convergence rate as a function of condition
numbers (see extensions below) and the extension to randomized algorithms
preferred by many practitioners.

In Section 5.1 we discuss extensions of this paper that we plane to develop
in the near future, and in Section 5.2 deeper (harder to get rid of) limitations.

5.1 Extensions

Two properties are used for applying our main theorem to quadratic functions
with a bound on condition numbers:

– VC-dimension of level sets. VC-dimension is a classical easy tool for showing
that a family of functions verify a property such as Eq. 19 for arbitrarily
small ε > 0, provided that k is large enough.

– Eq. 20, also crucial in the proof, is directly a consequence of bounded con-
ditioning (assumption formalized in Eq. 16).

With these two assumptions, we can show Eqs. 1-6, and then the theorem can
be applied. This is enough for objective functions with level sets having simple
graphical representations with rotations/translations.
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However, we do not need assumptions so strong as finite VC-dimension for
showing Eqs. 1-6. Glivenko-Cantelli results are enough; and for this, finiteness
of the bracketing covering numbers, for example, is enough [13]; this is the most
natural extension of this work. In particular, there are results showing the finite-
ness of bracketing covering numbers for families of Hölderian spaces of functions;
this is a nice path for applying results from this paper to wide families of func-
tions.

Assumptions in [2] are slightly different from assumptions in this paper; their
main assumption are

– the frontier of any level set f−1(r) has a bounded curvature.
– for some Cmin ∈ R and Cmax ∈ R, with x∗ the (assumed unique) optimum

of the objective function f and f(x∗) = 0, for any r ∈ R, we have

B(x∗, Cminr) ⊂ f−1(r) ⊂ B(x∗, Cmaxr).

The second assumption is equivalent to our conditioning assumption, but the
first one is not directly equivalent to our derandomized sampling assumptions.
Refining the assumptions might be possible by combining their assumptions and
our assumptions.

Condition numbers are classical for estimating the difficulty of local conver-
gence; a nice condition number for difficult optimization should generalize some
classical condition number from the literature, and include non-differentiable
functions as well. [12] did a first step for that; in particular, isotropic algorithms
do not solve functions with infinite condition number (for the definition of [12]),
whereas covariance-based algorithms [10, 8] do.

5.2 Limitations

In this paper, we work on an evolutionary algorithm for which mutations δi’s are
randomly drawn once and for all (the same mutation vectors δ1, . . . , δk for all
iterations of the algorithms). This makes the proof much easier. We believe that
the proof can be extended to the case in which the mutations are randomly drawn
at each iteration, as in most usual cases; yet, the adaptation is not straightfor-
ward; we must study the frequency (over iterations) at which assumptions 2-6
hold, and the consequences of bad cases on Eq. 15. For this paper, we just as-
sume that the δi’s are randomly drawn once and for all iterations; equivalently,
they could be quasi-randomized.

Cumulative adaptation [9] is not considered in our analysis; this is a consider-
ably harder step for generalizing our results, because then the simple separation
between 5 cases (see Fig. 2) is the idea that clearly divides the proof between
step-size adaptation and progress rate.

This work covers quadratic functions, but the rates are not independent of
the conditioning, so complementary results are necessary for algorithms evolving
a covariance matrix, such as [10, 3, 8]. Maybe ergodic Markov chains are a better
tool for showing such results [1].
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We work under assumptions which imply a very large k. More precisely, using
VC-dimension or bracketing numbers, it is possible to get explicit bounds on k,
but these numbers will be far above the usual values for k. Obtaining results for
limited values of k is a classical challenge in machine learning, and for the mo-
ment only huge values of k are applicable when using VC-dimension assumptions.
Seemingly, weaker assumptions are enough, such as Glivenko-Cantelli properties
[13]. For this paper, VC-dimension is easier to use and sufficient for our purpose.

Acknowledgements We are grateful to Rémi Bergasse [2] for interesting dis-
cussions.
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Abstract. Hyper-Heuristics is a recent area of research concerned with
the automatic design of algorithms. In this paper we propose a grammar-
based hyper-heuristic to automate the design of an Evolutionary Algo-
rithm component, namely the parent selection mechanism. More pre-
cisely, we present a grammar that defines the number of individuals that
should be selected, and how they should be chosen in order to adjust the
selective pressure. Knapsack Problems are used to assess the capacity to
evolve selection strategies. The results obtained show that the proposed
approach is able to evolve general selection methods that are competitive
with the ones usually described in the literature.

1 Introduction

Evolutionary Algorithms (EAs) are computational methods loosely inspired by
the principles of natural selection and genetics, that have been successfully ap-
plied over time to complex problems involving optimization, learning or design.
EAs work by defining an initial population of candidate solutions to the problem,
which are then iteratively improved by means of variation operators. The subset
of individuals that undergo the modification process must be selected according
to some fitness criteria. The quality of the solutions achieved by the EA de-
pend on the careful adjustment of some its components and/or parameters. The
design is usually performed off-line, by hand, and requires the use of expertise
knowledge.

Hyper-Heuristics (HH) is a recent area of research, involving the construction
of specific, high-level, heuristic problem solvers, by searching the space of possible
low-level heuristics for the particular problem one wants to solve [10]. HH can be
divided in two major groups [1]: the selection group encompasses HH that search
for the best sequence of low-level heuristics, selected from a set of predefined
methods usually applied to the problem one intends to solve; the other group
includes methods that promote the creation of new heuristics. In the later case,
the HH iteratively learns the specific algorithm which is then applied to solve the
problem at hand. During this process, the HH are usually guided by feedback
obtained through the execution of each candidate solution in instances of the
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2 N. Lourenço et al.

problem that needs to be solved. Genetic Programming (GP), a branch of EAs,
has been increasingly adopted as a HH to search for effective problem solving
algorithmic strategies [3][8]. In the recent years, Grammatical Evolution (GE)
[7], a form of GP, has been used with success as a HH, since it allows the
enforcement of semantic and syntactic restrictions, by means of a grammar.

In this paper we propose and test a GE-based HH framework to evolve a
EA particular component. Specifically, we propose a framework to evolve the
selection mechanism used by the EA. With this goal in mind, we expect to obtain
selection mechanisms that are general, and are able to successfully guide EAs to
solve the problem at hand. The selection component is important for the success
of the algorithm, since it determines which individuals should be combined to
produce new solutions. We describe a set of experiments, where we show that the
framework is able to evolve selection algorithms that are competitive with the
ones commonly used in EAs. Moreover we investigate the generalization capacity
of the evolved algorithms, by applying them to unseen scenarios. The results are
statistical validated.

The paper is organized as follows. In section 2 we discuss some previous
relevant work on HH for nature-inspired algorithms, and present the grammar
used to evolve selection strategies. In section 3 we introduce the experimental
setup for the learning phase and present the results. Section 4 deals with the
validation and generalization of the learned selection strategies. In section 5 we
summarize the results and suggest directions for future work.

2 A Grammatical Evolution Hyper-Heuristic

The proposed HH relies on GE to search for selection methods. GE is a GP
branch, more specifically a form of Grammar-based GP, in which the variation
operators are applied to solutions encoded as binary strings. A mapping process
is then required to decode this information into an executable algorithmic strat-
egy. The mapping is done by means of a grammar and this process decouples the
search engine from the evaluation mechanism. For these reasons, a GE system
is general and flexible [7].

2.1 Grammar Definition

To apply a GE engine in our HH framework we must define a grammar whose
words are specific selection strategies. In this work we propose a grammar with
some modifications to the traditional Backus-Naur Form (BNF), inspired by [2].
These modifications aim to overcome some limitations that the BNF imposes,
namely the lack of tools to allow repetition of non-terminal symbols and ranges
of alternative values. The first extension is the addition of the operator ∼ to
signal the repetition of non-terminals. The full syntax is as follows: ∼< a ><
NT >, where < a > is an integer or terminal value, indicating that the non-
terminal < NT > should be repeated < a > times. The second extension is the
addition of valued range alternatives. A range of numeric alternative values can
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Learning Selection Strategies for Evolutionary Algorithms 3

be compactly specified, using the operator &. Thus < int >::= 0&5 is equivalent
to < int >::= 0|1|2|3|4|5. Taking these extensions into account, the grammar
used in this work is as follows:

<start > ::= <calculate -parents > <selection -strategy >

<selection -strategy > ::= parents = {~number -of -parents <elements >}

<elements > ::= get_rank(<rank >)

<rank > ::= 0 & POP_SIZE

<calculate -parents > ::= number -of-parents = (random01 () * POP_SIZE)

The< start > symbol represents the grammar axiom. The grammar starts by
calculating the number of parents that the strategy should select, according to a
percentage of the total individuals available (POP SIZE). The evolved strategies
are targeted for EAs with a crossover operators, thus we enforce an even number
of parents in the selection pool. Afterwards, a selection strategy to choose which
individuals will appear in the selection pool is generated. The solutions from
the current population are ranked by fitness and a selection strategy emerges by
defining which ranks should be chosen as parents.

2.2 Related Work

Several efforts have been reported in literature to automatically evolve nature-
inspired algorithms. In [11], Tavares et al. adopted GP to evolve a population
of mapping functions between the genotype and the phenotype. Experimental
results showed that GP finds mapping functions that can obtain results as good
as the ones that are designed by hand.

In [3], Keller et al. propose a linear-GP HH to evolve heuristics to Travel-
ling Salesman problem. In their work they propose several small languages to
reduce the search space size. They conclude that the proposed HH is able to
evolve heuristics that are able to solve the problem at hand, and that they are
parsimonious, i.e. the heuristics make a good use of the resources available.

In [12], Tavares et al. proposed a GE framework to evolve Ant Colony Op-
timization Algorithms (ACO) to the Traveling Salesman Problem. The results
showed that the proposed framework is able to evolve ACO algorithms that are
competitive with the human designed ACOs.

Lourenço et al. [5] proposed a GE based HH to evolve full-featured EAs.
The results showed that the proposed architecture is able to evolve effective
algorithms for the problems under consideration.

In [13] Woodward et al. propose an HH to evolve mapping rules that assign
fitness values to each individual in the population. These fitness values are then
used to select individuals, using a fitness-proportional mechanism. They consider
a set of transformations that can be applied to either the rank or the fitness,
and then return the new fitness value of each individual. The experiments results
conducted showed that the evolved strategies are human competitive.
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3 Learning Selection Heuristics

In this section we aim to gain insight into the capacity of the proposed HH to
evolve effective selection strategies. The settings adopted by the GE-based HH
for all the tests conducted are depicted in Table 1. Individuals evolved by the
HH encode potential parent selection strategies. To estimate their relevance, one
must access how they help an EA to solve a given problem. Therefore, each HH
individual is implanted in a standard EA, which in turn will solve an instance of
an optimization problem. The quality of the best solution found by this EA is
used to assign fitness to the corresponding evolved selection strategy. Running
an EA to assign fitness to each evolved selection strategy is a computational
expensive task. To minimize the computational overhead, we rely on the following
conditions to assess the quality of the evolved strategies: i) one single instance
of moderate size is used to assign fitness; ii) only one run is performed.

We report experiments using three different EA settings as surrogates for the
selection strategies. In all of them, the maximum population size (POP SIZE)
is set to 50 and the number of generations is set to 250. Three possible replace-
ment strategies, R1, R2, and R3, are considered (see Table 2). R1 corresponds to
a standard generational EA, whereas the last two implement a steady-state archi-
tecture where descendants compete with existing individuals for survival based
on the fitness criterion. Both R1 and R2 force the evolved selection strategies
to select a number of parents that is equal to POP SIZE, thus the grammar
production < calculate−parents > simply becomes < calculate−parents >::=
number − of − parents = POP SIZE. On the contrary, R3 allows the selec-
tion strategy to choose a number of parents that is lower than POP SIZE. All
three replacement strategies consider uniform crossover with a rate of 0.9 and
swap mutation with rate 0.01 as variation operators. Additional combinations
of variations operators were tested with similar outcomes to those reported in
this paper (detailed results are not shown due to space constraints).

Table 1: Parameter setting for the GE-based Hyper-Heuristic
Parameter Value

One Point Crossover Probability 0.9
Bit Flip Mutation 0.01

Codon Duplication Probability 0.01
Codon Pruning Probability 0.01

Population Size 100
Selection Tournament with size equal 3

Replacement Steady State
Codon Size 8

Number of Wraps 3
Codons in the initial population 50-55

Generations 50
Runs 30
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Table 2: Replacement strategies used in the surrogate EAs.
Setting Fixed Replacement Strategy

R1
Yes

Generational
R2 Steady State
R3 No Steady State

3.1 The 0-1 Knapsack Problem

The combinatorial optimization 0-1 Knapsack Problem (KP) was selected as
the testbed for our experiments. It can be described as follows: given a set of
n items, each of which with some profit p and some weight w, how should a
subset of items be selected to maximize the profit while keeping the sum of the
weights bounded to a maximum capacity C? In all instances adopted in our
study, the knapsack capacity was set to half of the sum of the weights of all
items. A standard binary representation is adopted and evaluation considers a
linear penalty function to punish invalid solutions [6].

3.2 Results

The KP instance used to evaluate the selection strategies is composed by n = 100
items. Table 3 summarizes the results of the off-line learning process. Note that
the results are displayed in terms of the normalized root mean squared error.
Every cell contains two values: the number of GE runs that discovered selection
strategies that helped the EA to discover the optimum (BestHits) and the Mean
Best Fitness (MBF ) together with the corresponding standard deviation. The
outcomes reveal that, for all training situations, the HH is able to learn effective
selection strategies.

A detailed inspection reveals that the replacement strategies used in the sur-
rogate EA lead to the appearance of selection methods with different selective
pressure. The three lines from Fig. 1 (one from each replacement strategy) help
to clarify this issue. For every setting we selected the best selection algorithm
evolved in each run and created charts displaying the distribution of the appear-
ance of the possible ranks (values displayed are averages of 30 runs). Note that
rank 0 corresponds to the best individual and rank 49 to the worst. An inspec-
tion of the figure shows that selection strategies evolved inside a generational
surrogate (R1) have a higher selective pressure than those that evolved in the
steady state surrogates. In generational EAs, the whole population is replaced
at each generation. The HH acknowledges the risk of losing good quality solu-
tions and promotes the appearance of selection strategies with a high selective
pressure, thereby maximizing the likelihood of passing information contained in
good quality solutions to the next generations. On the other hand, in steady
state surrogate EAs, the ranks are distributed more or less evenly. This results
is not unexpected, since in this scenario, the greedy replacement mechanism al-
ready ensures selective pressure: an offspring only enters the population if it is
better than its parents. Therefore the selection strategy in these EAs can act
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more like a diversity preservation mechanism. Finally, in Fig. 2 we exemplify the
rank distribution of one of the best evolved strategies, using the R1 setting.

Table 3: Hyper-Heuristic learning results (for 30 runs)
Replacement strategies

R1 R2 R3

Best Hits 30 30 30
MBF 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000)
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Fig. 1: Rank distribution in the best evolved strategies with the three replace-
ment settings.

4 Validation of the Learned Selection Strategies

The experiments described in this section aim to study how the best strategies
discovered by the GE-based HH behave in KP instances that are different from
the one used in learning. We selected 4 evolved strategies from each possible
replacement strategy, taking into account the following criteria: i) quality of the
solution; ii) time taken to reach a solution. In the remainder of this section these
selection strategies are identified as R11 through R14 for methods evolved with
the R1 replacement strategy, R21 through R24 for R2 replacement strategy, and
R31 through R34 for R3 replacement strategy.

This experimental study will help to gain insight into the optimization per-
formance of EAs that have the learned strategies as selection methods. Also, we
will verify if the strategies generalize well to unseen instances and are compet-
itive with standard hand-designed selection strategies. Three common selection
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Fig. 2: Example of the rank distribution of a selection strategy evolved with the
R1 setting.

options (Roulette Wheel, Tournament with size 2, and Tournament with size
3) are considered. We report results obtained with a generational and a steady-
state surrogate EAs, both of them relying on uniform crossover with rate 0.9 and
binary swap mutation with rate 1/n as variation operators. A KP instance with
1000 items and with the knapsack capacity set to half of the sum of the weights
of all items was selected for the validation analysis. In every optimization sce-
nario, 30 runs were performed and the best solution found during the execution
was recorded. To support our analysis we apply the Friedman’s ANOVA test
to check for statistical differences in the means. When differences are detected,
the post-hoc Wilcoxon Signed Rank Test, with Bonferroni correction, is applied
to perform the pairwise comparisons. In both tests we used a significance level
α = 0.05.

Fig. 3 presents the MBF box plot distribution of the 15 selected strategies
(12 evolved and 3 hand-designed) for each validation scenario: Panel a) displays
the results for the generational surrogate, whereas panel b) presents the results
for the steady-state surrogate. Clearly, the performance of the evolved strategies
is related to the configuration where they are applied. Strategies R11−R14 were
evolved with a generational EA surrogate and, as a consequence, they promote a
considerable selection pressure. Therefore it is not a surprise that these strategies
achieve good results in a validation scenario where a generational surrogate is
adopted (see Panel 3a). On the contrary, strategiesR21−R24 andR31−R34 have
a low selective pressure and are inadequate for a generational EA environment.

An opposite situation arises in the steady-state validation surrogate (panel
3b). In this scenario, and given the fitness-based replacement strategy adopted,
selection methods evolved in a generational environment converge prematurely
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to sub-optimal regions of the search space. The remaining 8 evolved strategies
were obtained in a scenario similar to the one used in this validation phase.
For that reason they contain features that help to maintain diversity and to
effectively help the EA to discover the regions of the search space containing
the best solutions. The distinction between these two sets of evolved selection
methods confirms that the HH framework is able to generate strategies that are
suited to the specific features of the training environment.

The results displayed in the two panels of Fig. 3 confirm that the HH is able
to evolve selection methods competitive with the hand-designed approaches. The
information displayed in Table 4 helps to further clarify the relative performance
of learned strategies. Considering the MBFs attained, we performed a full set
of pairwise comparisons between evolved strategies and the hand designed algo-
rithms and present a graphical overview: A +++ indicates that the algorithm
in the row is statistically better than the one in the column, and that the effect
size is large (r ≥ 0.5). As an example, R11 clearly outperforms Roulette Wheel
in the Generational surrogate. A ++ sign indicates that there are statistical dif-
ferences, and that the effect size is medium (0.3 ≤ r < 0.5). A - signals scenarios
where the algorithm in the row is worst than the one in the column. Finally, a ∼
indicates that no statistical differences between the algorithms were found. The
statistical results confirm that evolved strategies tend to perform better in situa-
tions resembling those found during learning. Selection methods R11−R14 excel
in the generational scenario and one specific strategy (R13) is able to outperform
all hand-designed approaches. When the steady-state EA surrogate is adopted,
the effectiveness of the R21 − R24 and R31 − R34 strategies is evident. The
performance of methods evolved with the R2 setting is particularly impressive,
as each one of them outperforms all hand-designed selection mechanisms.

4.1 Generalization

To complete our analysis we briefly investigate if the evolved strategies generalize
well to a problem different from that used in the learning step. We maintain our
focus on the KP class, but consider the Multiple Knapsack Problem (MKP)
variant. The MKP can be described as follows: given two sets of n items and
m knapsack constraints (resources), for each item j, a profit pj is assigned, and
for each constraint i, a consumption value rij is assigned. The goal is to find a
subset items that maximizes the profit, without exceeding the given constraint
capacities Ci. Note that the KP is a special case of the MKP when m = 1. For a
formal definition and additional information on the MKP, please refer to [4] or
[9]. For our experimental analysis we selected several MKP instances from the
OR-Library3. Due to space constraints we present results obtained with a single
MKP instance with n = 250 items and m = 5 constraints. However, results
obtained with other instances follow the same trend.

We maintain the 15 selection strategies adopted in the previous validation
analysis and keep all other optimization conditions, including the two same surro-

3 http://people.brunel.ac.uk/ mastjjb/jeb/orlib/mknapinfo.html
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gate EAs. Fig. 4 depicts the MBF box plot distribution of the selection methods,
both for the generational (panel a)) and steady-state (panel b)) surrogates. In
table 5 we summarize the statistical comparison between the strategies consid-
ered in the generalization study. The analysis of the results reveals the exact
same trend that was identified in the previous validation. Considering the per-
formance of the evolved selection strategies, there is a clear correlation between
the conditions found in the off-line learning step and those of the validation/-
generalization experiments. Additionally, optimization results are competitive
with those achieved by hand-designed approaches: R11− R14 methods tend to
outperform standard selection strategies in generational environments, whereas
R21 − R24 and R31 − R34 excel in steady-state surrogates. These outcomes
confirm that the GE-based HH was able to learn strategies that generalize well
to different KP variants.
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Fig. 3: Optimization results of the 15 selection strategies chosen for the valida-
tion study: panels (a), (b), present the results obtained with the generational
and steady state EAs, respectively.

5 Conclusions

In this paper we proposed a GE-based HH to discover effective selection strate-
gies for EAs. The proposed grammar is composed by symbols that allow the
creation of rank-based selection strategies. We demonstrated the validity of the
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Fig. 4: MKP optimization results of the 15 selection strategies chosen for the
generalization study: panels (a), (b), present the results obtained with the gen-
erational and steady state EAs, respectively.

Table 4: Statistical analysis between the learned strategies and the hand-designed
methods in the KP (see text for details on the notation).

Generational Steady-State
Roulette Wheel Tournament(2) Tournament(3) Roulette Wheel Tournament(2) Tournament(3)

R11 +++ +++ - - ∼ ∼
R12 +++ +++ - - - ∼
R13 +++ +++ ++ - - ∼
R14 +++ +++ - - - ∼
R21 - - - +++ +++ +++
R22 - - - +++ +++ +++
R23 - - - +++ +++ +++
R24 - - - ++ +++ +++
R31 +++ - - ∼ ∼ +++
R32 - - - ∼ +++ +++
R33 +++ - - ∼ +++ +++
R34 +++ - - ∼ ∼ +++
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Table 5: Statistical analysis between the learned strategies and the hand-designed
methods in the MKP (see text for details on the notation).

Generational Steady-State
Roulette Wheel Tournament(2) Tournament(3) Roulette Wheel Tournament(2) Tournament(3)

R11 +++ +++ ∼ ∼ ∼ ∼
R12 +++ +++ +++ - ∼ ∼
R13 +++ +++ ++ - ∼ ∼
R14 +++ +++ +++ - ∼ ∼
R21 - - - +++ +++ +++
R22 - - - ∼ ++ +++
R23 - - - +++ +++ +++
R24 - - - ++ +++ +++
R31 - - - ∼ ++ +++
R32 - - - ∼ +++ +++
R33 - - - ∼ +++ +++
R34 - - - +++ +++ +++

approach in the domain of different Knapsack Problem variants. Results ob-
tained show that the HH framework adapts the selective pressure of the evolved
mechanism, taking into account the specific features of the adopted surrogate.
Despite the simplicity of the proposed grammar, the HH was able to learn effec-
tive selection strategies, competitive with standard hand-designed mechanisms
regularly adopted in the literature. Moreover, the evolved strategies generalize
well to different variants of the problem considered in our study.

There are several possible extensions to the work described in this paper. One
possibility is to expand this framework to different problems and verify if strate-
gies evolved in one specific optimization situation generalize well to different,
possibly related, problems. Another possibility is to consider different learning
design options, such as performing multiple runs to evaluate a solution, or the
adoption of multiple training instances .

We will also consider several extensions to the grammar, by adding new
symbols that take into account different features of the individuals belonging to
the population (e.g., age).
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Abstract. In this paper we are focusing on web accessibility, more pre-
cisely on improving web accessibility for Color Vision Deficiency (CVD)
users. The contrast optimization problem for dichromat users can be
modeled as a mono objective function which at minimum provides a suit-
able solution to the problem. The function aims to compensate the loss
and maintain simultaneously a minimum change in the original color.
The CMA-ES method is used to minimize the function. Experiments
were conducted on real and artificial data in order to assess the ap-
proach efficiency for different set of parameters. The results showed that
is likely that the method performs better when the loss is important.
The approach produces satisfying results on both real and artificial data
for the set of tested parameters.

Keywords: assistive technologies, CVD, Dichromacy

1 Web accessibility and CVD users

Web accessibility translates through universal access to web resources disregard-
ing of user’s abilities. Sets of recommendations were proposed by W3C’ WAI
(World Wide Consortium’ Web Accessibility Initiative) [17]. Web Content Ac-
cessibility Guidelines (WCAG) 1.0 [16] proposed in May 1999 provides recom-
mendations for creating accessible web content. They are organized as a set of
general principles. For each principle, conformance levels are defined according to
their impact on web accessibility and a set of checkpoints is defined. The newest
version of the guidelines (WCAG 2.0) regroups the recommendation into 4 main
categories: perceivable, operable, understandable and robust. For each category,
a list of success criteria is presented. For each criterion, several techniques are
presented to achieve it. Even though efforts were made by webmasters, very little
interest on accessibility is shown while building and designing web sites. In this
work, we are focusing on color contrast improvement for users with color vision
deficiency, more precisely dichromat users. WCAG 1.0 states that “Ensure that
foreground and background color combinations provide sufficient contrast when
viewed by someone having color deficits or when viewed on a black and white
screen”.
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Color vision deficiency (CVD) is the inability to perceive correctly certain
colors. This may consist in perceiving only black and white for achromatopsia
or slightly altered perception of red, green and blue for anomalous trichromacy
(protanomaly, deuteranomaly, tritanomaly) or in a sever altered perception for
dichromacy. In the following we are focusing on dichromacy. The dichromacy
is the result of the absence of one type of cone cells (among three) from eye
retina responsible for trichromat vision. Many types of dichromacy exists: (1)
Deuteranopia (red-green deficiency due to the lack of M (green) cone cells),
(2) Protanopia (red-green deficiency - L (red) cone cells are missing) and (3)
Tritanopia (yellow-blue deficiency - S (blue) cone cells are absent).

Several algorithms to simulate dichromacy were developed [2, 3, 12]. The sim-
ulation algorithm proposed by Kuhn [12] is used for our experiments. The sim-
ulation for dichromacy proposed by the later is performed in the CIE L*a*b*,
a color space which do not depend on the device on which the colors are rep-
resented. Many recoloring methods for dichromat were proposed for images [15,
12, 14], videos [13] and web pages [11, 10].

2 Web accessibility for CVD users as an optimization
problem

2.1 Contrast loss on textual content

The color space used to represent colors on the Internet is sRGB (standard Red
Green Blue). Let u = (ur, ug, ub) and v be two colors represented in the sRGB
color space, where ui ∈ J0 : 255K, i = {r, g, b}. Let L(u) be the luminance for the
color u and Γu,v the contrast between u and v according to [17]. We denote by
D(u) ∈ J0 : 255K3 the function that simulate dichromacy and ΓD

u,v the contrast
ratio as perceived by a dichromat user. Then we have:

Γu,v =
max(L(u), L(v)) + 0.05

min(L(u), L(v)) + 0.05
∈ [1 : 21] (1)

and
L(u) = 0.2126 ∗ h(ur) + 0.7152 ∗ h(ug) + 0.0722 ∗ h(ub) (2)

with

h(a) =





a/255
12.92 if a/255 ≤ 0.03928(
a/255+0.055

1.055

)2.4

otherwise
. (3)

For the contrast ratio, several recommendations are made in WCAG 2.0. The
guidelines 1.4.3 and 1.4.6 define minimum threshold at 4.5:1, respectively en-
hanced at 7:1 for the contrast ratio of textual information. We have computed
the contrast ratio for a standard and dichromat user over the entire sRGB color
space. The average loss computed over the entire sRGB is important. It is at
1.9 for Tritanope, 2.5 for Protanope and 2.6 for Deuteranope. The maximum
contrast loss may go up to 3.8 for a Protanope, 3.9 for a Deuteranope and 3.7
for a Tritanope.
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2.2 Online transformation of the colors through a user hosted proxy

We want to achieve on the fly transformation of the page using a user hosted
proxy. This kind of proxy allows to perform specific transformation on any type
of content even on secure content (HTTPs).

The experiments were performed with the help of Smart Web Accessibility
Proxy (SWAP) 1. SWAP is an open source project aiming to improve web acces-
sibility and usability. The proxy part of the project allows, among others things
to perform HTML and CSS analysis. The necessary time to carry out a specific
transformation using the proxy is highly dependent on the user machine capac-
ities. So we need to improve the color contrast with varying time constraints.
The goal is not the best solution but the best in the available time interval. It
includes accessing the page (time variation), decoding the page and interpreting
the colors (depends on the page size), improving colors (depend on the existing
relationships between colors), recoding the page into HTML (depends on page
size). CPU availability and user’s computer capacity are not controlled either.

Consequently, we have low control on the time required for a perfect page
recoloring, so we must be able to interrupt the process at any time and achieve
good recoloring.

2.3 Modeling the compensation as a mono objective function

We denote by C = {u1, . . . , u|C|} the set of colors found on the page, and by
CF the corresponding set of transformed colors. We denote by E ⊂ C × C the
set of couples characterized by foreground and background colors found on the
page. We denote by CI the set of initial colors. Let be α ∈ [0, 1] a parameter
that balances the importance of the contrast improvement versus color change
and ∆i the euclidean distance between the initial color ui and the corresponding
transformed color uF

i in CIE L*a*b* color space. We define by ΓF,D
i,j the final

contrast as perceived by a dichromat user for the couple of colors ui and uj. It will

be given by: ΓF,D
i,j = Γ (D(uF

i ), D(uF
j )) where D is the simulation function and

Γi,j the contrast ratio as defined above. Our aim is to compensate the contrast
loss and maintain in the same time a small amount of change in the colors. This
conducts to the minimization of the following function:

F (uF
1 , u

F
2 , . . . , u

F
N) = (1−α)

∑

(ui,uj)∈E

1

2

[
max(Γ I

i,j − ΓF,D
i,j , 0)

]2
+α

∑

ci∈C

1

2
∆2

i (4)

where max(Γ I
i,j − ΓF,D

i,j , 0) guarantees that the contrast ratio of the final colors
for a dichromat user is at least at the level of a standard user and ∆i ensures that
the perceptual distance between the final and the initial colors is maintained and
α is a constant used to weight between contrast compensation and reducing the
change in colors.

1 https://projectsforge.org/projects/swap/
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3 CMA-ES for color compensation

3.1 CMA-ES

CMA-ES is a stochastic optimisation method for non-smooth and non-linear
fitness function. It is also one of the best evolutionary algorithm [9]. In this work
we evaluate the usability of CMA-ES for the contrast compensation problem
for dichromat users. The method’s working principle consists in searching a
better solution (individual) among a set of candidate solutions (population of
individuals) for a number of iterations (generations) [4]. We denote by xk

i ∈
Rn, n ∈ N, the i-th individual at generation k ∈ N, where η ≥ 2 represents
the population size and λ ≤ η the number of selected individuals from the
population. At each generation new individuals are sampled using multivariate
normal distribution (N (µ,Σ)):

xk+1
i ∼ σkN (µk, Σk) . (5)

Also the mean, the covariation matrix and the step size are updated. The new
mean is computed as a weighted average of the selected individuals sorted in a
ascending order after their fitness value. It is given by:

µk+1 =
λ∑

i=1

ωix
k+1
i . (6)

The covariation matrix is updated using an evolution path. An evolution path
that exploits the information from the previous generation is built. Let λvar =(∑λ

i=1 ω
2
i

)−1

[4] be an indicator of the selection variance, cc ≤ 1 be the learning

rate and pkc ∈ Rn be an evolution path at generation k. The new evolution path
is given by:

pk+1
c = (1− cc) p

k
c +

√
cc (2− cc)λvar

µk+1 − µk

σk
(7)

where 1
cc

is the back time horizon for pc. At generation k + 1 the covariation
matrix is given by:

Σk+1 = (1− c1 − cλ)Σ
k + c1p

k+1
c

(
pk+1
c

)T
+ cλ

λ∑

i=1

ωiz
k+1
i

(
zk+1
i

)T
(8)

where zk+1
i =

xk+1
i −µk

σk , c1 is chosen to be around 2
n2 and cλ ≈ min

(
λvar/n

2, 1− c1
)

The step size update is given by [4] :

σk+1 = σkexp

(
cσ
dσ

( ‖pk+1
σ ‖

E‖N (0, I)‖ − 1

))
(9)

where pσ is a conjugate evolution path which at generation k + 1 is built as
follows:

pk+1
σ = (1− cσ) p

k
σ +

√
cσ (2− cσ)λvar

(
Σk

)− 1
2
µk+1 − µk

σk
. (10)

More details on the method can be found in [1, 8, 7, 5, 9, 6].
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3.2 Adaptation to contrast compensation

In our approach, we consider an individual i at generation k = 0 to be represented
by the set of the original colors as following: xi = (uk

1 , u
k
2 , . . . , u

k
N) where ui ∈ C

and N = |C|. With the notation established in section 2.3, we have design the
fitness function F : J0 : 255K3N → R+ given by (4). Minimizing F will provide a
solution to our contrast compensation problem. By its construction the fitness
balances between contrast compensation and color changes. The contrast and
the perceptual distance values are normalized in [0:1] in the fitness expression
to avoid scale problems.

3.3 Real and generated dataset

In the analysis we have considered two types of data. Real data (DR) were
obtained through CSS parsing real web pages. For each page, a CSS analysis
was performed in order to accurately extract the colors and the relationships
between them. We consider a page as being fully represented by a set of entities
characterized by foreground and background color. The method is also tested
on agenerated data (DG). We have created a similar set of entities for which
the contrast loss is artificially increased. To generate such colors, we have used
the confusion line as defined in [3]. Overall data from over 350 pages real and
generated ones were taken into account in our analysis. The real dataset has in
average 9 colors and 8 distinct couple of colors per page. For each page, we have
computed the number of couple of colors that display contrast loss. The average
percentages of those couples are presented in Fig 1.
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Fig. 1: Average percentage of color couples losing contrast
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3.4 Experiments and discussion

An experimental study was performed on both real and artificial data. The
experimental study purpose is to identify the parameter setting that performs
statisfactory after a small number of evaluations. As we are dealing with on-
the-fly transformation, the ultimate goal is not as much as delivering a perfect
solution but more like a satisfactory improvement in a short amount of time,
the maximum time limit being defined by the user in the final application. As
for the CMA-ES implementation, we have used the java version provided by the
authors2. This choice suites us, as tests were performed with SWAP platform
developped in java. Considering the experiments, 50 runs of the CMA-ES were
performed for each page. Their average was considered as being the method
result for that page.

Several hypothesis were tested. We have studied the relationship between
the amount of compensation needed and the method behaviour (less compen-
sation for real data, more compensation for artificial dataset). Also, we have
tried to see if the method efficiency is bound to the initial step size and popu-
lation size variation. A choice of parameter values was made. We have consider
population size (eta) of 5 and 10 individuals. We have considered the values
σ = {0.02, 0.002, 0.0002} and α = 0.15. Considering α, higher values can be cho-
sen. The choice for 0.15 was made under the hypothesis that a user may prefer
a greater compensation of contrast than less variation in colors. We denote by
A the set of all parameter settings obtained through the variation of initial step
size (σ) and population size (η) as mentioned above. For each parameter settings
ai ∈ A of CMA-ES, for each page p, the average fitness value for t evaluations
is F ai

p (t). We define :

fm
p (t) = min

ai∈A
t=1..2500

F ai
p (t), fM

p (t) = max
ai∈A

t=1..2500

F ai
p (t) (11)

representing the minimum and the maximum fitness value over the parameter
settings.

Also we were interested in establishing the global efficiency of the method.
For this, we have computed the average performance for each type of dataset
(real and artificial) :

fa
i (t) =

1

|Di|
∑

p∈Di

F a
p (t)− fm

p (t)

fM
p (t)− fm

p (t)
, i ∈ {R,G}. (12)

As we are dealing with an important time constraint, we are interested in de-
termining the fitness behaviour after a small number of evaluations. The Table
1,2, 3 and 4 present the average normalized performance for all the parameter
settings (PS) taken into account and for all type of dataset. This kind of knowl-
edge is important as we are trying to able to perform on-the-fly transformation
of the page. The chosen number of evaluation is not random, it may coresponds

2 https://www.lri.fr/~hansen/CMA-ES_inmatlab.html#java
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to user thresholds in the final application. A set of compensation levels may be
proposed to the user from which he may choose the one that better suits his
needs.

Table 1: Average normalized performance at 600, 800, 1000 and 1200 evaluations
for PS1(σ = 0.02, η = 5), PS2(σ = 0.002, η = 5), PS3(σ = 0.002, η = 10) on
real data

CVD type PS1 PS2 PS3

600 800 1000 1200 600 800 1000 1200 600 800 1000 1200

Deuteranope 0.69 0.66 0.64 0.61 0.6 0.57 0.55 0.54 0.54 0.50 0.48 0.47
Protanope 0.63 0.59 0.56 0.54 0.5 0.47 0.46 0.44 0.44 0.42 0.40 0.38
Tritanope 0.84 0.81 0.78 0.75 0.59 0.56 0.54 0.51 0.49 0.46 0.44 0.42

As we can see in Table 1 for about only 600 evaluations the average fitness
reaches around 0.5. This means that even in a limited amount of time an im-
provement is possible. We also can notice that the best behaviour among the
variants of methods tested is achieved by PS3. PS1 and PS2 perform modest
after 600 evaluations. A medium step size and a wider exploration of the search
space produces half of the improvement needed.

More tests need to be performed in order to verify if a even larger exploration
may produce satisfying results faster.

Table 2: Average normalized performance at 600, 800, 1000 and 1200 evaluations
for PS4(σ = 0.0002, η = 5)and PS5(σ = 0.0002, η = 10) on real data

CVD type PS4 PS5

600 800 1000 1200 600 800 1000 1200

Deuteranope 0.67 0.63 0.6 0.57 0.67 0.61 0.57 0.53
Protanope 0.63 0.58 0.55 0.52 0.66 0.6 0.55 0.51
Tritanope 0.56 0.52 0.49 0.46 0.55 0.51 0.48 0.45

Table 2 shows that a higher initial step size produces modest results after a
relatively small number of evaluation.

We can observe in Table 3, that PS3 and PS1 perform better on pages in
need of a higher level of compensation.
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Table 3: Average normalized performance at 600, 800, 1000 and 1200 evaluations
for PS1(σ = 0.02, η = 5), PS2(σ = 0.002, η = 5), PS3(σ = 0.002, η = 10),
PS4(σ = 0.0002, η = 5), PS5(σ = 0.0002, η = 10) on artificial data

CVD type PS1 PS2 PS3

600 800 1000 1200 600 800 1000 1200 600 800 1000 1200

Deuteranope 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.01 0
Protanope 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.01 0
Tritanope 0.13 0.11 0.1 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.04 0.03

It can also be observed that protanope and deuteranope behaviour is similar
for the choices of parameters tested. Also other parameters setting involving
bigger initial step size may be tested.

Table 4: Average normalized performance at 600, 800, 1000 and 1200 evaluations
for PS4(σ = 0.0002, η = 5)and PS5(σ = 0.0002, η = 10) on artificial data

CVD type PS4 PS5

600 800 1000 1200 600 800 1000 1200

Deuteranope 0.42 0.29 0.2 0.15 0.57 0.4 0.29 0.21
Protanope 0.42 0.28 0.2 0.15 0.58 0.41 0.29 0.22
Tritanope 0.41 0.32 0.26 0.22 0.51 0.4 0.32 0.26

We have measured the transformation time using the client proxy part of the
SWAP project. The transformation includes : html parsing, CSS parsing, color
extraction, building relationships between colors, color optimization, sending the
modified response with the optimized colors to the clients’ browser.

A protanope transformation for a page with only 9 colors and 8 entities
(which constitues the average in the real dataset used for experiments) , needs
4.3 seconds for 1200 evaluations using PS3 (σ = 0.002 and η = 10). For a page
with 4 colors and 3 entities a tritanope transformation for 1200 evaluation takes
1.3 seconds (σ = 0.002 and η = 10).

Taking into account the statistics presented in Table 1 and 3, we may con-
clude that our method can reach a satisfying compensation is a small amount of
time.

The mean for the best parameter settings was computed and presented in
Fig. 2 and 3. Protanope and Deuteranope have a similar behaviour for both real
and artificial data. In general CMA-ES tends to performs better when an impor-

246



tant contrast compensation is needed, as seen in Fig 3. These results are highly
dependent of our choices made considering the values of parameters and may be
related to the considered dataset. A cluster analysis remains to be performed
in order to establish the influence of the dataset characteristics as : number of
colors on the page, the quantity of compensation needed, the complexity of the
relationships between colors, the number of entities on the page that display a
lower contrast. This set of parameters and much more need to be tested on the
resulted clusters. This kind of analysis will provide useful knowledge which can
be used in establishing appropriate thresholds in terms of number of evaluation
for different types of parameters and pages. More work needs to be done in
determining these thresholds on a larger dataset.

4 Conclusion

In this paper, we propose an evolutionary approach to the contrast compen-
sation for dichromat users. The performed experiments showed that CMA-ES
works better when the contrast loss is important. The method behaviour is sim-
ilar for protanope and deuteranope and it tends to perform slightly better for
tritanope. Moreover, only about 700 evaluations are enough to obtain an accept-
able solution to our problem. As time is an important aspect of our problem,
reasonable amount of time maybe enough to obtain an improvement. Still more
things remain to be done: for instance combination of parameters that help the
method to converge faster when the compensation is little need to be found.
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Fig. 2: Average normalized performance for CMA-ES on real data for PS2 and
PS3
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Abstract. This paper studies the multitrip cumulative capacitated ve-
hicle routing problem (mt-CCVRP), a variant of the classical capacitated
vehicle routing problem (CVRP). In the mt-CCVRP the objective func-
tion becomes the minimization of the sum of arrival times at required
nodes and each vehicle may perform more than one trip. Applications
of this NP-Hard problem can be found in disaster logistics. This article
presents a Multistart Evolutionary Local Search (MS-ELS) that alter-
nates between giant tour and mt-CCVRP solutions, and uses an adapted
split procedure and a variable neighborhood descent (VND). The results
on two sets of instances show that this approach �nds very good results
in relatively short computing time compared with a multistart iterated
local search which works directly on the mt-CCVRP solution space.

Keywords: multi-trip cumulative capacitated vehicle routing problem,
disaster logistics, evolutionary local search, split, VND

1 Introduction

A recent trend is to apply operations research techniques to facilitate logistic
operations in disaster relief. An important logistical issue after a disaster is to
determine the transportation routes for �rst aids, supplies, rescue personnel or
equipment between supply points and the destination nodes geographically scat-
tered over the disaster region. The arrival time of relief supplies at the a�ected
communities clearly impacts the survival rate of the citizens and the su�ering.

In this sense, vehicle routing models can be considered for delivery in dis-
aster context by using service-based objective functions to re�ect the di�erent
priorities for delivering humanitarian aid (Campbell et al. [1]).

In this paper, the multitrip cumulative capacitated vehicle routing problem

(mt-CCVRP) is studied (Rivera et al. [2]). The mt-CCVRP is raised by the relief
operations, in which a) the classical objective function (total time or distance
traveled) becomes the sum of arrival times at required nodes and b) vehicles are
allowed to perform multiple trips. This �exibility is necessary when the total
demand exceeds the total capacity of the �eet of vehicles.

The paper is structured as follows: Section 2 brie�y reviews the state of
the art. In Section 3 the problem is formally de�ned. The proposed approach
is developed in Section 4. Experimental results are presented in Section 5 and
concluding remarks are given in Section 6.
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2 State of the Art

In relief context, it is critical that the deliveries to a�ected sites be both fast
and fair. Campbell et al. [1] suggest that using service-based objective functions
may better re�ect the di�erent priorities and strategic goals found in delivering
humanitarian aid. The minimization of the average arrival times re�ects better
the emergency of humanitarian logistic operations than the classical objective
functions such as the minimization of total tour length. Note that the minimiza-
tion of the average arrival times is equivalent to the minimization of the sum of
arrival times.

The sum of arrival times has been already used in some traveling salesman
problems (TSP). For instance, the minimum latency problem consists in �nding
a tour starting at a depot and visiting each other node only once, in such a
way that the total latency is minimized [3, 4]. This problem is also known as
the delivery man problem [5] or the travelling repairman problem (TRP) [6, 7].
The multiple travelling repairman problem (k-TRP) generalizes the TRP where
k tours must be determined [6].

The cumulative capacitated vehicle routing problem (CCVRP) is a variant
of the CVRP where the objective function becomes the sum of arrival times at
demand nodes. Ngueveu et al. [8] provide a mathematical model, several lower
bounds and two memetic algorithms. Ribeiro and Laporte [9] present an adap-
tive large neighborhood search (ALNS) algorithm which is compared with the
approach in [8], while Ke and Feng [10] improve some best known solutions with
a two-phase metaheuristic by using exchange-based and cross-based operators
to perturb the solutions in the �rst phase and local search moves in the second.

A comparison between cost minimization, minimization of the maximal ar-
rival time and minimization of the average arrival times for the TSP and CVRP
is given by Campbell et al. [1]. Their paper introduces lower bounds, an insertion
heuristic and a local search procedure.

A common assumption is that each vehicle performs a single trip. Clearly, in
many cases this assumption does not hold. Nevertheless, only Rivera et al. [2]
consider multiple trips and the minimization of the sum of arrival times. These
authors develop a non trivial mathematical model for mt-CCVRP, an MS-ILS
metaheuristic and a dominance rule with respect to the order of trips a multitrip.

Our approach uses a split procedure, proposed by Prins [11] for the CVRP
and adapted by Ngueveu et al. [8] for the CCVRP. Although, due to special
features of the problem, the procedure must be adapted to mt-CCVRP.

3 Problem De�nition and Mixed Integer Linear Model

The problem can be de�ned on an undirected complete graph G= (V,E). The
node-set V ={0, ..., n} includes a depot-node 0 and a set V ′=V \ {0} of a�ected
sites or required nodes. In the sequel, it is assumed that G is encoded as a
symmetric directed graph. A �eet of R identical vehicles of capacity Q is based
at the depot and each node i∈V ′ has a known demand qi. It is assumed without
loss of generality that

∑
i∈V ′ qi≥ R×Q, n≥R, and qi≤Q, ∀i∈V ′.
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The objective is to identify a set of trips such that each site is visited exactly
once and the sum of arrival times at the sites is minimized. The important factor
in the emergency relief operations is the arrival time at sites and not the total
distance traveled by vehicles. A trip is de�ned as a circuit, starting and ending at
the depot, in which the total demand serviced does not exceed vehicle capacity
Q. Every trip must be assigned to exactly one vehicle and vehicles are allowed to
perform more than one trip. The set of successive trips performed by one vehicle
is called multitrip. The 0−1 mixed integer linear program (MILP), based on the
model proposed by Rivera et al. [2], is de�ned by equations (1) to (16).

min Z =
∑

i∈V

∑

j∈V
wij yij +

∑

i∈V ′

∑

j∈V ′

(wi0 + w0j) y
′
ij (1)

∑

i∈V ′

x0i = R (2)

∑

i∈V ′

(xij + x′ij) + x0j = 1, ∀ j ∈ V ′ (3)

∑

i∈V ′

(xji + x′ji) + xj0 = 1, ∀ j ∈ V ′ (4)

∑

j∈V
Fji −

∑

j∈V
Fij = qi, ∀ i ∈ V ′ (5)

Fij ≤ Q xij , ∀ i, j ∈ V, i 6= j (6)

F0j ≤ Q
(
x0j +

∑

i∈V ′

x′ij

)
, ∀ j ∈ V ′ (7)

yij ≤ (n−R+ 1) xij , ∀ i, j ∈ V, i 6= j (8)

y′ij ≤ (n−R) x′ij , ∀ i, j ∈ V ′, i 6= j (9)
∑

j∈V
(yij − yji) +

∑

j∈V ′

(y′ij − y′ji) = 1, ∀ i ∈ V ′ (10)

yij ≥ xij , ∀ i ∈ V, j ∈ V ′ (11)

y′ij ≥ x′ij , ∀ i ∈ V ′, j ∈ V ′ (12)

yij ≥ 2 xij − xj0, ∀ i ∈ V, j ∈ V ′ (13)

y′ij ≥ 2 x′ij − xj0, ∀ i ∈ V ′, j ∈ V ′ (14)

xij ∈ {0, 1}, yij ≥ 0, Fij ≥ 0, ∀ i, j ∈ V, i 6= j (15)

x′ij ∈ {0, 1}, y′ij ≥ 0, ∀ i, j ∈ V ′, i 6= j (16)

The model uses the concepts of replenishment arcs (Boland et al. [12]) and
arc coe�cients (Ngueveu et al. [8]). Variables are indexed by arcs and no trip
nor multitrip index is required. Fij de�ne the �ow (load) on each arc (i, j). The
binary variables xij are equal to 1 if and only if arc (i, j) is traversed by a vehicle.
Variables yij expresses the arc coe�cients which are very useful to compute the
objective function and prevent subtours. Similar variables x′ij and y′ij are used
for replenishment arcs. Roughly speaking, yij is the number of times the arc cost
wij is counted in the solution cost. For instance, if a route visits nodes 1, 2 and
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3, the sum of arrival times is (w01) + (w01 + w12) + (w01 + w12 + w23) and the
arc coe�cients are y01 = 3, y12 = 2 and y23 = 1.

The objective function (1) represents the sum of arrival times at a�ected
sites. Constraints (2) mean that only R vehicles (R multitrips) can be used.
Equations (3) and (4) respectively indicate that exactly one arc is traversed to
arrive at site j and leave it. Constraints (5) to (7) concern �ow variables and
ensure that each demand is satis�ed. Constraints (8) to (9) limit the number of
arcs in a multitrip and equation (10) decrease the arc coe�cients along trips.

Constraints (11) and (14) are new valid inequalities. Constraints (11) and (12)
imply that all traversed arcs with not depot destination have an arc coe�cient
greater or equal to one. Constraints (13) and (14) express that traversed arcs
with not depot destination have an arc coe�cient greater or equal than two, but
becomes one if the destination of its immediate successor arc is the depot.

Finally, constraints (15) and (16) de�ne the �ve groups of variables.

4 Multistart Evolutionary Local Search

The proposed hybrid metaheuristic is a multistart evolutionary local search (MS-
ELS) which alternates between giant tours and mt-CCVRP solutions and calls a
split procedure and a variable neighborhood descent (VND) as improving phases.
The proposed MS-ELS is sketched in Algorithm 1 while its internal components
are described in the sequel.

MaxStart successive Randomized Greedy Solutions are constructed. Every
randomized initial solution S, is immediately improved by the VND. Concate-
nate procedure allows to translate the solution S in a giant tour T . After that,
MaxIter iterations are performed. In every iteration MaxChildren copies (T ′′) of
T are taken, a perturbation procedure (Perturb) is performed to each copy, the
perturbed giant tours are optimally split up in multitrips (S′′) by a Split proce-
dure and improved by VND. The best of the MaxChildren solutions is used to
replace S, in case of improvement. Finally, the best solution found S∗ is updated
when S improves the latter. The procedures Precompute and Update are used
to speed up the VND.

In Algorithm 1, Z(S∗) is the global best solution cost and Z(S′) is the cost
of the best child of the actual generation.

4.1 Solution Representations

Two solution representations are used. In a mt-CCVRP solution, noted by S,
each multitrip is coded as a list of nodes in the order to be visited and uses the
character “0” to delimit at the start and end of trips which means the visit to
the depot. Giant tour solutions, noted by T , are composed of a single list of all
required nodes in the order to be visited without trip or multitrip delimiters.
The procedure Concatenate is used to transform a solution S to its equivalent
T , while Split procedure optimally translates a solution T to an adequate S.
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Algorithm 1 � MS-ELS

Z(S∗)←∞
for Start ← 1 to MaxStart do

Greedy_Randomized_Heuristic (S)
Precompute (δ, S)
VND (S)
for Iter ← 1 to MaxIter do

Concatenate (S, T )
Z(S′)←∞
for Child ← 1 to MaxChildren do

T ′ ← T
Perturb (T ′)
Split (T ′, S′′)
Update (δ, S′′)
VND (S′′)
if Z(S′′) < Z(S′) then

S′ ← S′′

end if

end for

if Z(S′) < Z(S) then
S ← S′

end if

end for

if Z(S) < Z(S∗) then
S∗ ← S

end if

if Z(S) < Z(S∗) then
S∗ ← S

end if

end for

return S∗

4.2 Pre-computations

Cost variation in moves is computed based on the concatenation operator ⊕,
proposed by Silva et al. [13], using the following data structures: given a sub-
sequence σ, c(σ) denotes the cost to perform σ when starting at time 0, t(σ)
denotes the duration, |σ| denotes the number of nodes in σ, and ←−σ denotes the
reversal of σ.

The cost and the duration of a subsequence with one node are assumed to
be 0 since there is no travel. The operator ⊕ concatenates two subsequences,
σ = (u, ..., v) and σ′ = (u′, ..., v′). The following equations allow to compute the
number of nodes, the duration and the cost values for σ ⊕ σ′:

|σ ⊕ σ′| = |σ|+ |σ′|
t(σ ⊕ σ′) = t(σ) + wv,u′ + t(σ′)

c(σ ⊕ σ′) = c(σ) + |σ′|(t(σ) + wv,u′) + c(σ′)
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Moreover, moves browsed in VND often require reversals of subsequences.
Contrary to the routing problems with cost-based objective functions, the sum of
arrival times of a subsequence is modi�ed after a reversal. In order to evaluate in
O(1) the cost variation of all moves, the cost for the reversal of any subsequence
σ in the incumbent solution must be prepared. The subsequences considered
contain required nodes only, so they must be completely contained in a trip.

Consider the reversal of σ=σ′⊕u, where u is a single node and σ′ = (u′, ..., v′).
The cost c(←−σ ) can be recursively deduced in O(1) from the subsequence σ′ as
←−σ =u⊕←−σ′ , using Equation (17). Note that c(

←−
σ′) = 0 if |σ′| = 1.

c(←−σ ) = c(v ⊕
←−
σ′) = |σ′| · wu,v′ + c(

←−
σ′) (17)

The reversal costs is be prepared in O(n2) by the procedure Precompute,
before calling the VND after the initial solution. Update procedure updates the
reversal costs after the Split to renovate the values but restricted to the subse-
quences contained in modi�ed multitrips.

4.3 Initial Solutions

Each start of our MS-ELS uses an initial solution built by a greedy randomized
heuristic. Each new route is initialized with the farthest unserviced site. Then,
all feasible insertions of remaining sites are evaluated, a restricted candidate
list (RCL) gathers the sites satisfying Equation (18), and one site is randomly
selected from the RCL to be inserted.

RCL = {i ∈ V ′′ | z(i) ≤ zmin + 0.05× (zmax − zmin)} (18)

V ′′ is the set of unserviced sites, z(i) the insertion cost of site i in the emerging
trip, and zmax and zmin the largest and smallest insertion costs.

Finally, R empty multitrips are prepared, the trips are sorted in non decreas-
ing order of mean duration, de�ned as total duration divided by its number of
required nodes, and added one by one at the end of the shortest multitrip. Rivera
et al. [2] showed that the cost of a multitrip is minimized by ordering its trips
in non-decreasing order of mean trip duration.

4.4 Variable Neighborhood Descent

The improvement procedure used in the MS-ELS is a variable neighborhood
descent (VND), based on p = 8 neighborhoods. Each neighborhood is implicitly
de�ned by a type of move. Starting from k = 1 and one input mt-CCVRP
solution S, the basic iteration of VND consists in exploring the neighborhood
Nk of S. As soon as a better solution is discovered, it replaces S and k is reset
to 1, otherwise k is incremented. The procedure stops when the exploration of
Np brings no improvement. Only feasible solutions are considered.

2-OPT moves on one trip (N1): The 2-OPT move on one trip was already
used by Ngueveu et al. [8] for the CCVRP. It consists in deleting two arcs and
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reconnecting the resulting fragments using two new arcs. Equivalently, it can
be de�ned as the reversal of a subsequence, represented as σ1⊕←−σ2⊕σ3, where
σ1 =(1, ..., i), σ2 =(i + 1, ..., j) and σ3 =(j + 1, ..., 0). As a trip gets a di�erent
cost when inverted, we consider also the new variant represented as ←−σ3⊕σ2⊕←−σ1.

λ-interchanges on one trip (N2): Moves tested in this neighborhood con-
sist in exchanging a subsequence σ1 from one to λ consecutive nodes with another
(non-overlapping) subsequence σ2 containing zero to λ consecutive nodes. Each
subsequence with more than one node can be reversed in the reinsertion, giving
four cases. Note that we allow a length of zero for the second subsequence, to
include relocations of the �rst string.

2-OPT moves involving two trips in a multitrip (N3): This neighbor-
hood takes two routes k and k′ in the same multitrip, deletes one arc from each
route and reconnects them with di�erent arcs. As we allow the reversal of each
resulting subsequence in these transformations, eight cases must be evaluated.

λ-interchanges involving two trips in a multitrip (N4): Here, the λ-
interchanges involve one subsequence in each trip. As we allow the reversal of
each trip, 4 cases must be evaluated.

2-OPT moves on two trips done by distinct vehicles (N5): 2-opt moves
a�ecting two trips of di�erent multitrips are similar to the ones browsed in N3

but they use two routes in di�erent multitrips. As both sequences come from
di�erent vehicles, a larger number of moves can be performed when R≥2.

λ-interchanges on two trips done by distinct vehicles (N6): The λ-
interchanges moves a�ecting two trips from two di�erent multitrips are similar
to the ones browsed in N4. As in N5, a larger number of moves can be performed
when R ≥ 2.

In all cases, cost variation of moves in N1, N2, N3, N4, N5 and N6 can be
evaluated in constant time by using the operator ⊕. So, these neighborhoods
can be browsed in O(n2).

Trip interchange (N7): This neighborhood interchanges two routes from
di�erent multitrips. Every route is inserted in the corresponding multitrip by
following the dominance rule mentioned before. Note that only one order must
be considered for every multitrip. As every move is evaluated in constant time,
this neighborhood can be browsed in O(R2n).

Trip splitting (N8): This neighborhood adapts the route-splitting proce-
dure for the multitrip VRP (Petch and Salhi [14]). This procedure starts by
determining the shortest multitrip b, inspects each multitrip m 6= b and evalu-
ates the cost variation if the last trip of m is cut after the �rst, second, . . ., last
but one customer and moved at the end of multitrip b. This process, which can
be implemented with an O(Rn) complexity, is interrupted as soon as a saving
is obtained. In case of improvement, the VND goes back to neighborhood N1,
otherwise it terminates.

4.5 Concatenation

The concatenation procedure allows to transform a mt-CCVRP solution, S, to
a giant tour solution, T , without trip or multitrip delimiters in a list of size n.

258



8

The procedure starts by adding to an empty list, in order, the required nodes
visited by the �rst multitrip, after that it continues adding the required nodes
of the second multitrip, and so on, until multitrip R.

4.6 Perturbation

In the MS-ELS method, the perturbation is applied at each iteration consists
in changing the direction of a subsequence of nodes chosen randomly in a giant
tour T . While this kind of perturbation changes the absolute position of a lot
of nodes in the giant tour, the relative position remains similar. This kind of
perturbation keeps together most of the nodes of the original solution but the
new solution is di�erent because a) the cost of a sequence changes when it is
reversed and b) new trips are de�ned by the split procedure.

4.7 Split

This procedure allows to obtain a mt-CCVRP solution S from a giant tour
solution T by solving a shortest path problem in an auxiliary digraph H =
(X,A,U). X = {0, 1, ..., n} is the set of nodes. The arc set A contains one arc
(i−1, j) if sequence σ = (Ti, ..., Tj) can be visited by a multitrip. The mapping U
de�nes the cost (sum of arrival times) ui−1,j of these arcs. Note that multitrips
do not have capacity constraints.

The cost ui−1,j of arc (i − 1, j) ∈ A can be computed by solving a supple-
mentary shortest path problem on another auxiliary digraph H ′ = (X ′, A′, U ′),
where the set of nodes X ′ contains a dummy node 0, and the nodes of subse-
quence σ. The arc set A′ contains arc (i′ − 1, j′) if and only if the subsequence
σ′ = (Ti′ , ..., Tj′) can be serviced by a feasible trip, satisfying the capacity con-
straint. The set U ′ contains the cost u′i′−1,j′ of arc (i′ − 1, j′) ∈ A′, which is the
sum of arrival times of the corresponding trip.

Every time an arc (i − 1, j) ∈ A is considered to compose a multitrip, two
options are possible: either vehicles have enough capacity to visit all required
nodes and the cost is computed as ui−1,j = u′i−1,j = w0,Ti + c(σ) or the mul-
titrip must be split up in two or more trips. In the second case, the cost of
arc (i′ − 1, j′) ∈ A′ can be computed as a function of the successive trips as
ui′−1,j′ = w0,Ti′ + c(σ′) + |σ′0| · (w0,Ti′ + t(σ′) + wTj′ ,0), where σ

′ = (Ti′ , ..., Tj′)
and σ′0 = (Tj′ , ..., Tj). The path on graphs are built backward in order to deduce
the splitting of the giant tour in O(Rn4).

5 Computational Experiments

5.1 Description and Implementation

MS-ELS algorithm is implemented in Visual C++ and the mathematical model
is solved by CPLEX 12.4. Both have been tested on a 2.50 GHz Intel Core i5
computer with 4 GB of RAM and Windows 7 Professional. Two sets of exper-
iments are reported. The �rst one compares the solution of the 0-1 MILP via
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CPLEX solver with the hybrid metaheuristic. Such comparison is only possi-
ble on small instances. The second set compares the MS-ELS with the MS-ILS
introduced by Rivera et al. [2].

Three sets of instances are used for our experiments: 12 small instances (n=
15) of Rivera et al. [2] (RAP), 7 modi�ed instances of Christo�des et al. [15]
(CMT), and 20 modi�ed instances of Golden et al. [16] (GWKC). Modi�cations
consist in reducing the number of vehicle in order to force them to execute several
trips and maximum trip length are relaxed.

5.2 MS-ELS Parameter Tuning

The MS-ELS has only four parameters: the number of successive starts (MaxS-

tart), the number of iterations per ELS (MaxIter), the number of children
(MaxChildren) and the maximum number of consecutive sites in λ-interchange
moves (λ). As the running time is roughly proportional to the number of calls
to the VND, we decided to allocate a �computing budget� of 3000 calls to
avoid excessive execution times. The best results on average are obtained with
MaxStart = 3, MaxIter = 100, MaxChildren = 10 and λ = 3. For large
instances results are also compared with MaxStart = 3, MaxIter = 1000,
MaxChildren = 1 and λ = 3 which is equivalent to MS-ILS by adding the
split procedure.

5.3 Results on Small Instances

Table 1 compares the results for the 0-1 mixed integer linear program and the
MS-ELS. The �rst four columns display the instance name, the number of re-
quired nodes, the number of vehicles and the average number of trips per vehicle∑n

i=1 qi/(QR). For MILP we provide linear relaxations, solution values (at the
end of one hour, the best lower bound and the cost of the best integer solution
found), the running times in seconds, limited to one hour, and the percentage
gap between best lower bounds and best cost of integer solutions. The best so-
lution value over �ve runs, the average running time per run in seconds and the
percentage gap between the best lower bound and the best cost are indicated
for MS-ELS.

For the eight �rst instances, CPLEX �nds an optimal solution. The instances
look harder when the number of vehicles decreases and the average number of
trips per vehicle increases: the running time of CPLEX augments quickly and the
four last instances cannot be solved in one hour. However, the MS-ELS always
returns a solution in at most 5.07 seconds (3 on average). On the other hand,
the MS-ELS reaches all optimal or best known solutions, and improves one of
the best integer solutions found by CPLEX.

5.4 Results on Larger Instances

The results for larger instances are presented in Table 2 for CMT instances
and Table 3 for GWKC instances, using the same columns: instance name,
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Table 1. Tests on small instances of Rivera et al. [2]

File n R

∑
qi

QR
0-1 MILP MS-ELS (5 runs)

LR Cost Time Gap Best cost Time Gap

RAP01 15 4 1.00 619.04 687.29 8.66 0.00 687.29 1.87 0.00
RAP02 15 4 1.25 633.47 741.91 33.99 0.00 741.91 2.54 0.00
RAP03 15 4 1.67 686.32 855.91 38.38 0.00 855.91 1.76 0.00
RAP04 15 4 2.50 851.99 1090.67 24.20 0.00 1090.67 1.24 0.00
RAP05 15 3 1.11 697.26 817.22 16.13 0.00 817.22 4.15 0.00
RAP06 15 3 1.33 708.68 942.45 414.64 0.00 942.45 3.98 0.00
RAP07 15 3 1.67 733.24 1008.03 560.17 0.00 1008.03 2.06 0.00
RAP08 15 3 2.22 788.88 1111.04 124.54 0.00 1111.44 2.38 0.00
RAP09 15 2 1.25 802.20 (1116.97 / 1182.66) - 5.88 1182.66 5.07 5.88
RAP10 15 2 1.67 814.44 (1100.45 / 1327.76) - 20.65 1310.17 3.16 20.43
RAP11 15 2 2.00 830.58 (1199.17 / 1391.60) - 16.05 1391.60 3.28 16.05
RAP12 15 2 2.50 862.40 (1296.97 / 1513.06) - 16.66 1513.06 1.11 16.66

Mean 1301.72 3.07

number of nodes n, number of vehicles R, average number of trips per vehi-
cle

∑n
i=1 qi/(QR), best known solution BKS, and for each method (MS-ILS,

MS-ELS1 and MS-ELS10) deviation from the best solution found in 5 runs in
percent (Dbest), average deviation of the 5 solutions from BKS in percent (Davg)
and average duration per run in seconds (Time). MS-ELS10 refers to MS-ELS
with ten children and 100 iterations while MS-ELS1 refers the same method with
one child and 1000 iterations.

Table 2. Results for the instances of Christo�des et al. [15]

Instance n R

∑
qi

QR
BKS

MS-ILS MS-ELS1 MS-ELS10

Dbest Davg Time Dbest Davg Time Dbest Davg Time

CMT01 50 3 1.62 3856.39 0.00 0.16 78.26 0.00 0.14 34.62 0.00 0.14 32.61
CMT02 75 3 3.25 8300.15 0.00 0.04 68.37 0.00 0.01 47.59 0.00 0.03 48.22
CMT03 100 3 2.43 10957.00 0.00 0.42 238.07 0.40 0.63 144.66 0.00 0.45 139.25
CMT04 150 3 3.73 20595.93 0.01 0.25 479.34 0.00 0.07 316.62 0.00 0.21 329.71
CMT05 199 3 5.31 33981.40 0.18 0.48 750.80 0.16 0.42 502.71 0.00 0.97 551.14
CMT11 120 3 2.29 15797.40 0.00 0.17 470.41 0.00 0.11 217.54 0.00 0.14 275.24
CMT12 100 3 3.02 10658.70 0.00 0.00 329.87 0.00 0.00 137.85 0.00 0.00 149.42

Average 0.03 0.22 345.02 0.08 0.20 200.23 0.00 0.28 224.46

On the CMT instances, the average computational time is less than 4 min-
utes, varying between 0.58 and 8.38 minutes for MS-ELS1 and between 0.54
and 9.18 minutes for MS-ELS10. MS-ELS10 is 35% faster than MS-ILS, while
MS-ELS1 is 42% faster than MS-ILS.

With �ve runs, MS-ELS10 always �nds the best known solution, and two
solutions are improved. The average costs for �ve runs is close to the best cost
(0.28%), indicating that MS-ELS is robust. MS-ELS1 �nds 5 best known solu-
tions and improves two of the solutions �nds by MS-ILS.

The best and average deviation for MS-ELS10 increase moderately on the
GWKC instances, with 0.19% and 0.52%, respectively. Nevertheless, 7 best
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Table 3. Results for the instances of Golden et al. [16]

Instance n R

∑
qi

QR
BKS

MS-ILS MS-ELS1 MS-ELS10

Dbest Davg Time Dbest Davg Time Dbest Davg Time

GWKC01 240 4 2.18 122885.56 0.41 0.27 2443.14 0.52 0.29 1376.02 0.00 0.35 1530.17
GWKC02 320 4 2.29 254443.84 0.06 0.23 5330.64 0.00 0.19 3624.22 0.00 0.22 3647.97
GWKC03 400 4 2.22 434710.60 0.25 0.63 10123.85 0.77 0.83 8536.12 0.00 0.24 7779.81
GWKC04 480 4 2.40 675615.36 0.16 0.44 15887.69 0.18 0.71 13478.36 0.00 0.66 14041.62
GWKC05 200 3 1.48 193339.55 0.00 0.15 3018.47 0.07 0.43 1685.89 0.04 0.32 1799.27
GWKC06 280 3 2.07 335034.88 0.00 0.22 5846.47 0.12 0.29 3381.19 0.02 0.26 3658.15
GWKC07 360 3 2.67 493826.53 0.00 0.34 9144.21 0.15 0.47 7451.69 0.15 0.55 7301.47
GWKC08 440 5 1.96 399995.84 0.00 0.42 13280.66 0.17 0.45 11153.84 0.51 0.60 11017.77
GWKC09 255 5 2.69 13752.04 0.23 0.32 1433.82 0.00 0.39 993.54 0.35 0.51 1026.94
GWKC10 323 6 2.53 18410.68 0.18 0.65 2374.63 0.00 0.52 1812.07 0.36 0.61 1905.67
GWKC11 399 7 2.43 24239.20 0.13 0.33 3920.85 0.40 0.42 3565.39 0.00 0.57 3525.50
GWKC12 483 8 2.34 31144.78 0.00 0.68 5831.21 0.08 0.61 5785.64 0.03 0.55 6210.10
GWKC13 252 10 2.51 10056.24 0.25 0.27 913.49 0.13 0.36 492.32 0.00 0.27 541.42
GWKC14 320 12 2.39 13413.98 0.32 0.25 1687.19 0.03 0.13 975.29 0.00 0.21 1031.94
GWKC15 396 15 2.15 16385.79 0.14 0.16 2263.48 0.00 0.13 1884.62 0.14 0.19 1917.32
GWKC16 480 15 2.39 24188.15 0.00 0.39 3737.54 0.25 0.86 3426.15 0.23 0.79 3320.24
GWKC17 240 10 2.16 6618.18 0.00 0.63 791.04 0.29 0.68 433.94 0.25 0.62 443.48
GWKC18 300 12 2.25 9385.02 0.00 0.43 1265.00 0.27 0.64 812.46 0.27 0.70 789.69
GWKC19 360 12 2.70 14894.56 0.00 0.33 2032.59 0.72 0.89 1283.22 0.79 1.14 1352.93
GWKC20 420 15 2.52 17939.90 0.00 0.49 2554.13 0.49 0.77 1946.51 0.64 1.05 2078.44

Average 0.11 0.38 4694.01 0.23 0.50 3654.92 0.19 0.52 3745.99

known solutions are improved. The deviation from the best solution found (Dbest)
from MS-ELS10 is larger than the Dbest from MS-ILS due to the values of a few
instances. But, if instances GWKC08, GWKC19 and GWKC20 are ignored,
Dbest from MS-ELS10 becomes 0.11% while Dbest from MS-ILS becomes 0.13%.

MS-ELS1 improves 4 best known solutions, one of them is also found by MS-
ELS10. The best and average deviation for MS-ELS1 are similar for both set of
parameters.

The average computational time has been improved about 20% by MS-ELS1

and MS-ELS10, and it is ranging from 7 minutes to 234 minutes. The proposed
metaheuristic is still stable in terms of solution quality, yet the execution times
vary a lot among instances of the same size. This variation is mainly due to the
number of trips and the number of nodes per trip which have a great e�ect on
the number of moves in neighborhoods.

A comparison between these methods shows that the use of the split proce-
dure increases the e�ciency of the MS-ELS algorithm respect to the MS-ILS,
and the use of multiple children improves its performance.

6 Conclusions

The mt-CCVRP constitutes a good way to model the delivery of relief supplies
after a humanitarian disaster, where the number of vehicles is limited and the
time to reach a�ected areas is critical. The article presents an adapted split
procedure and a VND in a hybrid multistart evolutionary local search algorithm.

On small instances, the resulting algorithm MS-ELS �nds the same results
as the mathematical model when the latter can be solved to optimality. The
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MS-ELS competes with published method by �nding new best known solutions
and improving the execution time.

A promising extension is the generalized CCVRP, in which the relief supplies
must be delivered to one airport to be selected among the ones that are still
operational in each region. Split deliveries should be allowed for a better use of
vehicles.
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In this paper we present a nearest neighbor particle swarm optimization (PSO) algorithm
applied to the numerical analysis of the inverse problem in electrocardiography. A two-step
algorithm is proposed based on the application of the modified PSO algorithm with the
Tikhonov regularization method to calculate the potential distribution in the heart. The
PSO improvements include the use of the neighborhood particles as a strategy to balance
exploration and exploitation in order to prevent premature convergences and produce a better
local search. In the literature the inverse problem in electrocardiography is solved using the
minimum energy norm in a Tikhonov regularization scheme. Although this approach solves the
system, the solution may not have a meaning in the physical sense. Comparing to the classical
reconstruction, the two-step PSO algorithm improves the accuracy of the solution with respect
to the original distribution. Finally, to validate our results, we create a distribution over
the heart by using a model of electrical activity (Bidomain model) coupled with a volume
conductor model for the torso. Then, using our method, we make the reconstruction of the
potential distribution.

Keywords: direct and inverse problems, particle swarm optimization (PSO), bio-inspired
algorithm, finite element, electrocardiography, bidomain

1. Introduction

Cardiovascular disease is the leading cause of mortality in the Western countries
and the most common cause of death in people beyond 35 years in China, India and
South America (IHME 2013). Although cardiac function is linked to its muscular
contraction in the common minds, this mechanical function is fully determined and
dependent on prior electrical activation of the cardiac cells. Therefore any cardiac
electrical disorder would impact on muscular contraction. The ideal solution will be
to measure directly the potential in the heart, but this is highly invasive. To calculate
the electrical activity on the heart using boundary surface potential measurements
(BSPMs) is known as the inverse problem in electrocardiography.
The methodology is to consider the torso as a volume conductor (ruled by the equa-
tion of Laplace), and then using a high density electrocardiogram to measure the
electrical activity on the thorax’ surface. This problem is considered as an ill-posed

∗Corresponding author. Email: alejandro.lopezrn@hotmail.com, migcien@gmail.com
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boundary value, and it is commonly solved employing regularization techniques (Gul-
rajani 1998).
In the literature the heart is considered as a closed surface in a quasi-static scheme
(Rudy 2010). This approach has a linear relationship to the BSPMs (Yamashita
1982), but it is not possible to determine the sources in the cardiac volume. Consider-
ing that the inverse problem in electrocardiography is ill-posed, many techniques and
methods have been developed to constrain the possible solutions; stochastic search
algorithms like genetic algorithm (GA) and particle swarm optimization (PSO) have
been found to be effective in dealing with these type of problems (Jiang et al. 2008)
and (Chen et al. 2010).
PSO is a population-based evolutionary technique inspired by the social analogy of
swarm behavior in populations of natural organisms, such as a flock of birds or a
school of fish (Kennedy and Eberhart 1995). The main procedure for PSO is to gen-
erate a population of candidate solutions, called particles. The particles are moved
in the search-space according to the mathematical formula of the particle’s position
and velocity. Each particle’s movement is influenced by it’s local best known position
and toward the best known positions in the search-space. The positions are updated
as better positions are found by other particles. This moves the swarm toward the
best solutions. The final solution is chosen by a stop criterion or a specified number
of iterations (Shi and Eberhart 1999).
The PSO has been successfully applied in a wide variety of optimization and inverse
problems (Poli 2008), for example inverse scattering problems (Donelli et al. 2006),
for geophysical inverse problems (Mart́ınez et al. 2010), for inverse heat conduction
problems (Liu 2012). Moreover in (Mart́ınez-Molina et al. 2011), the authors used
the PSO to determine parameters to a predator-prey model.
The idea of optimization algorithms for the inverse problem in electrocardiography
can be found in the literature. For example in (Serinagaoglu Dogrusoz and Ma-
zloumi Gavgani 2013), the authors propose the use of real-valued genetic algorithms
for the estimation of multiple regularization parameters, that otherwise can not be
measured. These parameters are used to constrain the solution spatially and tem-
porally. In the work by (Sarikaya et al. 2010) evolutionary algorithms are employed
with a set of real measures, and regularized solutions to improve the solution of the
inverse problem. This method is similar to the one proposed by (Cary and Throne
1995) using artificial neural networks instead of an evolutionary approach. Both of
these methods require training data sets for the algorithm to work. A similar ap-
proach can be found in (Jiang et al. 2006), where the construction of the initial
populations comes from Tikhonov regularized solutions.
Although PSO has proved to converge quickly towards an efficient solution in a re-
duced number of iterations (Shi and Eberhart 1999), it has been reported that PSO
experiences difficulties in reaching the global optimal solution in some optimization
problems (Angeline 1998), and can suffer premature convergence (Krink et al. 2002).
In this paper, we use an improved PSO algorithm, using the nearest neighbor based
on (Cui et al. 2009) to improve the performance of the standard PSO. Kennedy em-
pirically examined the effects of some neighborhood topologies in the PSO (Kennedy
1999). Similar approaches have been proposed in (Cervantes et al. 2009) and in (Akat
and Gazi 2008) showing better results compared to standard PSO.
The modified PSO was implemented in a two-step scheme to solve the inverse prob-
lem in electrocardiography, and reconstruct the cardiac sources. We generate an op-
erator, which gives the relationship between the membrane potential on the heart,
and the potential on the thorax surface using Finite Element Method approxima-
tion. The solution is in a two step algorithm. The first step is to utilize the enhanced
PSO to create an approximate answer. The algorithm will look for the coefficients of

266



3

the fundamental solution of the Laplace equation that solves the volume conductor
system. In the second step, we will use the solution from the modified PSO in a
Tikhonov regularization scheme (Aster et al. 2013), as a priori information.
The system was tested by using voltage distributions generated by the Bidomain
model (see for e.g. Sundnes et al. (2006)). The Bidomain model is used to calculate
forward computations of extra-cellular and BSPMs using membrane potentials in
the heart. A set of membrane potentials are created, and then voltage distributions
over the thorax are calculated using them. In our numerical tests the membrane
potentials will be reconstructed and compared to the originals.

The paper is organized as follows. In Section 2, we explain some information
on inverse problem in electrocardiography. Then Section 3 describes the particle
swarm optimization (PSO) and the nearest neighbor PSO algorithm. In section 4,
we demonstrate the simulation experiments, and we discuss the results. Lastly, we
present the conclusions.

2. Methods

2.1 Create the Operator

The Bidomain model is a model of the electrical properties of the cardiac muscle
averaged over many cells. The model considers the anisotropy of the intracellular
and extracellular domains, which affects the electrical behavior. The model is highly
anisotropic; there will be different conductivities for the direction parallel, perpen-
dicular and normal to the fiber directions of the cardiac muscle. The Bidomain model
is given by the following equation in terms of ue, and vm, which are the extracellular
and membrane potential:

∇ · (Mi∇(vm + ue)) = χCm
∂v

∂t
+ χIion + χIapp, (1)

−∇ · (Mi∇v) = ∇ · ((Mi +Me)∇ue). (2)

where Cm is the membrane capacitance per unit area, χ is the membrane surface-
to-volume ratio. The conductivity tensors for the intracellular, and extracellular
medium are Mi, and Me. The ionic current is given by Iion, and the applied current
is Iapp. If we consider equal anisotropy rates Me = λMi (Sundnes et al. 2006) then
we can reduce the system, to the simplified model (Monodomain), for a further
explanation refer to (Sundnes et al. 2006). The Monodomain model is given by the
following set of equations:

λ

1 + λ
∇ · (Mi∇vm) = χCm

∂v

∂t
+ χIion + χIapp, (3)

∇ · (Mi∇vm) = −∇ · ((1 + λ)Mi∇ue). (4)

Observe that the equation (4) can be expressed numerically in the following matrix
form:

Mvm = Nue, (5)

or

MN−1vm = ue. (6)
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If we take the Laplace equation system, that describes the volume conductor model;

−∇ · (κ∇u) = 0 in Ω,
u = g on Γ1,

κ∇un = h on Γ2,
(7)

Herein, Ω is the torso, Γ1 the heart surface, and Γ2 the thorax surface.The nodes in
the thorax will be indicated with sub-index t, the nodes in the heart h, and the nodes
in between v. We can build the matrix-vector system in the following form. First
we calculate the Stiffness Matrix; we calculate the stiffness matrix which entries are
equal to

Kij =
∫

Ω
κ∇φi∇φjdΩ i, j = 1, 2, ..., N(numberofnodes). (8)

The resulting matrix vector equation will be:


Khh Khv Kht

Kvh Kvv Kvt

Kth Ktv Ktt





uh

uv

ut


 =




0
0
0


 . (9)

The nodal values of the potential are uh, uv, ut for the inner surface, volume, and
outer surface, respectively. Then we apply the Dirichlet condition; we consider uh

is given, and considering no overlapping between the surfaces. Then, the system
becomes

[
Kvh Kvv Kvt

0 Ktv Ktt

] 

uh

uv

ut


 =

[0
0

]
, (10)

or
[
Kvv Kvt

Ktv Ktt

] [
uv

ut

]
=
[−Kvhuh

0

]
. (11)

Next, we apply the Neumann condition. For each triangle in the outer surface (where
the Neumann condition is applied), we calculate the following coefficient;

Neumannc = (A)/3.0, (12)

Where A is the area of the triangle.Then, we apply these contributions to each of
the nodes of the triangle. In the end we will have a vector the size of the nodes of
the outer surface. This vector we will call it Nv. The contributions will be in the
form Nvi+ = Neumannci . Creating this vector the global Laplace matrix-equation
will be;

[
Kvv Kvt

Ktv Ktt

] [
uv

ut

]
=
[ −Kvhuh

N t
vκ∇ut · n

]
. (13)

If the values in the volume in between are not from our interest; from the equation
(13) we can build a direct relationship between the potentials on the two surfaces;

Kvvuv +Kvtut = −Kvhuh, (14)
Ktvuv +Kttut = N t

vκ∇ut · n. (15)
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Observe that from (14) we get

uv = −K−1
vv (Kvhuh +Kvtut). (16)

Using this in (15), we obtain,

−KtvK
−1
vv Kvhuh −KtvK

−1
vv Kvtut +Kttut = N t

vκ∇ut · n, (17)

or

(Ktt −KtvK
−1
vv Kvt)ut = N t

vκ∇ut · n+KtvK
−1
vv Kvhuh. (18)

We will define the operators P and Q as follows:

P = (Ktt −KtvK
−1
vv Kvt)−1KtvK

−1
vv Kvh, (19)

Q = (Ktt −KtvK
−1
vv Kvt)−1N t

v. (20)

Then we can write the system (18) in the following form

ut = Puh +Qκ∇ut · n. (21)

The flux over the thorax is null so the multiplication Qκ∇ut · n, will be zero. Thus,
the relationship between the outer and inner surface will be

Puh = ut. (22)

For our test we consider an isolated heart; this means there is no continuity of the
flux from the heart, and we take into account the potential as a Dirichlet condition.
For this we add the following relationship

uh = ue. (23)

The result from this and (6) is

PMN−1vm = ut. (24)

Since the inverse problem is an ill-posed problem a regularization technique is nec-
essary. The regularization technique used in our study is a global Tikhonov-scheme.
For this global scheme, the nodal values uh can be estimated by minimizing a gen-
eralized form of the discretized Tikhonov functional:

minvm(||PMN−1vm − ut||2 + λ||C(vm − v′m)||2), µ > 0, (25)

where C is a constrained matrix (the identity matrix), and v′m is the a priori infor-
mation. For the minimum energy v′m = 0, and for the two-step v′m = vpso; where
vpso is an approximation made using particle swarm optimization. For our datasets,
we took the value of µ = 0.00001.
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3. Two-Step Algorithm

3.1 Particle swarm optimization

Particle Swarm Optimization (PSO) is a population-based evolutionary algorithm
based on the social behaviour of birds flocking and fish schooling, it was firstly in-
troduced by (Kennedy and Eberhart 1995). The population denominated as swarm
uses a number of particles (candidate solutions) which are moved around the search
space to find best solution using their positions. Each particle cooperates with the
others during the search process by sharing the information of its current position
with the best position that it and the other particles in the swarm have found. The
mathematical formulation of the PSO is as follows:
Initially, a number of particles N of the swarm xi are randomly positioned in the
search space and random velocities vi are assigned to each particle. Then, each par-
ticle is evaluated by calculating the objective function. Once the particles have been
evaluated the values of the particle’s best position pi and the global best position
g are calculated. Next, the algorithm iterates until the stopping criterion is met;
that is either an acceptable minimum error is attained or the maximum number of
iterations is exceeded. In each k iteration, each particles position xk+1

i and velocity
vk+1

i are updated following the next equations:

vk+1
i = ω · vk

i + c1 · r1
(
pk

i − xk
i

)
+ c2 · r2

(
gk − xk

i

)
(26)

xk+1
i = xk

i + vk+1
i , (27)

where ω is a real constant called inertia weight, c1 and c2 are the acceleration coeffi-
cients that moves the particles toward the local and global best positions; and r1 and
r2 are both random values uniformly distributed between zero and one. The process
is repeated until the stopping condition is met, the final value of gk represents the
optimum solution found for the problem optimized using this algorithm.

3.2 Nearest neighbor particle swarm optimization

As mentioned above, an enhanced PSO is used based in local neighborhood topology.
A third term in the velocity calculation is aggregated using the nearest neighbor in
the search space. The nearest neighbor rule is based on the distance between particles
in the search space. The result equation by adding the nearest neighbor nk

i to the
calculation of velocity in each particle is:

vk+1
i = ω · vk

i + c1 · r1
(
pk

i − xk
i

)
+ c2 · r2

(
gk − xk

i

)
+ c3 · r3

(
xk

i − nk
i

)
. (28)

The nearest neighbor nk
i is the nearest individual according to a distance computed

on the swarm, nk
i is modeled according to the following equation:

nk
i = min

j∈{1,2,...,N}
(di,j), (29)

where the di,j is the Euclidean distance between the particles i and j, such that
di,j = ‖xi − xj‖.
The ratio between pk

i , gk and nk
i controls the effect of the velocities and the trade-off

between the global and local exploration capabilities of PSO.
The additional term can be considered as a vibration. At first steps in the algorithm,
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the distance between two arbitrary particles is large, and the vibration may produce
a better probabilities to escape from local minimums. At final stages, the distance
of two arbitrary particles is small, this may provide a local exploitation in the area.
These aspects, avoiding premature convergence and local search can make the near-
est neighbor PSO algorithm converge more efficiently to global optimum.

3.3 Two-Step Algorithm using nearest neighbor PSO

The optimization process begins by setting a random set of possible solutions with
a fixed initial number of members in the swarm, called particles. In the swarm each
particle is defined by a collection of variables. The solution will have the form of the
fundamental solution of Laplace. The fundamental solution of the Laplace equation
in 3D centered at a point (ξ, η, ς) is:

∂2ω

∂x2 + ∂2ω

∂y2 + ∂2ω

∂z2 + δ(x− ξ, y − η, z − ς) = 0. (30)

or

ω(x) = − A

4π
√

(x− ξ)2 + (y − η)2 + (z − ς)2 +B, (31)

where ξ,η, ς, A and B are constants.Note that from (31) we have 5 coefficients to
find ( ξ,η, ς, A and B).
The parameters of both PSO and the modified PSO are set to c1 = 2, c2 = 2;
besides, the weight factor decreases linearly from 0.9 to 0.2 (Shi and Eberhart 1999).
The other parameters has been determined experimentally, they are kept for all
experiments. Such parameters are set to N=50, c3 = 0.5 and iteration number =
1000. The steps involved in the nearest neighbor PSO algorithm are detailed below.
Initially the maximum (max) and minimum (min) limits in the search space are
defined for each value. For the membrane potential vm will be −85 mv, and 15 mv
respectively. Each particle of the swarm will be a vector containing the 5 values of
the coefficients. The particles are composed of 5 decision variables. Each particle is
evaluated using (31) at each node, creating solution vectors. The details steps for
the nearest neighbor PSO are listed as follows.

Step1. The algorithm randomly initialize positions and velocities for all of the
particles in the swarm. Include one particle initialized at -85, which is the stability
value for the electrical activity.

Step2. The vectors are evaluated by the norm

||PMN−1vm − ut||2. (32)

Step3. The personal historical best position pk
i , the global best position gk and

every nearest neighbor position nk
i are updated.

Step4. At iteration k, the velocity of the particle i, is updated as:

vk+1
i = ω · vk

i + c1 · r1
(
pk

i − xk
i

)
+ c2 · r2

(
gk − xk

i

)
+ c3 · r3

(
xk

i − nk
i

)
(33)

and the new position is computed as:

xi = xi + vi (34)
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Step5. The procedure is repeated until

||PMN−1vm − ut||2 < β or niter < 1000, (35)

where β is the stop parameter value, and niter is the number of iterations.
Step6. Use the nearest neighbor PSO result as a priori information in equation

(25) v′m = vg.
The overall method is the following:
• Create transfer matrix using FEM.
• Create operator for the relationship between membrane potential and BSPMs.

- for(i = 0; i < Measures quantity; i+ +)
� Create 99 first vector solutions randomly.
� Create 1 vector solution at -85.
� while(||PMN−1vm − ut||2 < β or niter < 1000)

- Evaluate particles.
- Update historical best, global best and nearest neighbor positions of every

particle.
- Calculate velocities.
- Update positions.

� minvm(||PMN−1vm − ut||2 + λ||C(vm − v′m)||2), vm = vg.

4. Experimentation

In order to validate the two-step algorithm, we generate a voltage distribution in the
thorax by using the Bidomain model (to resemble the real electrical activity of the
heart). Later, we rebuild the membrane potential using the minimum energy norm
v′m = 0, and the nearest neighbor PSO solution v′m = vg. To assess the precision of
the reconstructed solution we use the following formula

difference =
∑

(vmi − vmi∗)2
∑

(vmi)2 , (36)

for the difference between the original distribution vm and the calculated one vm∗.

4.1 Experiment 1
In the first test an impulse in the basal plane over the left ventricle was applied.
The original membrane potential generated with the cardiac model is in Figure 1.
The reconstructed model using the minimum energy norm is found in Figure 2.
The resulted model from the two-step algorithm is shown in Figure 3. The heart
is inverted showing the basal plane in the bottom, and the apex on the top for
visualization purposes.
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Figure 1. Original Membrane Potential Distribution for 0 ms, 50 ms, 150 ms, 200, ms, 250 ms, 300 ms,
350 ms, 400 ms created using the Bidomain model for one pulse.

Figure 2. Membrane Potential Distribution for 0 ms, 50 ms, 150 ms, 200, ms, 250 ms, 300 ms, 350 ms,
400 ms originated using the minimum energy norm.
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Figure 3. Membrane Potential Distribution for 0 ms, 50 ms, 150 ms, 200, ms, 250 ms, 300 ms, 350 ms,
400 ms originated using the two-step algorithm.

4.2 Experiment 2
In the second experiment impulses in three points over the basal plane were applied;
in the left ventricle, in the right ventricle and the wall that divides them. The
original membrane potential distribution is in Figure 4. The reconstructed model
using minimum energy norm is in Figure 5. Using the two-step algorithm is shown
in Figure 6.

Figure 4. Original Membrane Potential Distribution for 0 ms, 50 ms, 150 ms, 200, ms, 250 ms, 300 ms,
350 ms, 400 ms created using the Bidomain model for three pulses over the basal plane.
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Figure 5. Membrane Potential Distribution for 0 ms, 50 ms, 150 ms, 200, ms, 250 ms, 300 ms, 350 ms,
400 ms created using the minimum energy norm.

Figure 6. Membrane Potential Distribution for 0 ms, 50 ms, 150 ms, 200, ms, 250 ms, 300 ms, 350 ms,
400 ms created using the two-step algorithm.

4.3 Discussion

Based in the previous numerical simulations we summarize the results in Table
1 (using (36)) for comparison between minimum energy, PSO algorithm, nearest
neighbor PSO algorithm and two-step algorithm. The values in Table 1, refer to the
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difference between the original membrane potential distribution using Bidomain,
and the calculated using the inverse problem for different methods. The smaller
the value from the difference is; the closer the calculated solution is to the original
distribution. In the literature the inverse problem in electrocardiography is solved
using the minimum energy norm for a closed geometry (Wang et al. (2010); Wang and
Rudy (2006); Wang et al. (2009),(Wang et al. 2011)). We would like to mention that
with our new method we can reconstruct the sources and the membrane potential,
which is not possible by using minimum energy norm method alone. Moreover, the
quality of the reconstruction of electrical cardiac activity improved significantly by
using our new method (two-step algorithm) comparing to the classical regularization
methods used in Wang et al. (2010); Wang and Rudy (2006); Wang et al. (2009).

Table 1 summarizes the results obtained, all algorithms have been programmed in
C# over the same computer. The simulations have been executed 10 times indepen-
dently on each algorithm . In this table, results are based on the best (B), average
best (AB), and standard deviation (SD) of the values obtained by each algorithm.
As can be seen from results of table 1, the two-step algorithm presents the best
performance and obtains the best precision in both experiments.

Index Minimum Energy PSO NN-PSO Two-Step Algorithm

1 Pulse
B 0.9674 0.7341 0.6937 0.6656

AB 0.9763 0.7562 0.7056 0.6661
SD 0.11 0.24 0.005 0.0004

3 Pulse
B 0.9770 0.4341 0.3861 0.3632

AB 0.9847 0.4359 0.3872 0.3635
SD 0.13 0.34 0.003 0.0002

Table 1. Comparison between the distributions from experiments 1 and 2, and the calculated using the in-
verse problem for these different methods; Minimum Energy, PSO Algorithm, NN-PSO Algorithm and Two-Step
Algorithm.

5. Conclusion

In our paper, we proposed a novel two-step scheme algorithm using the nearest
neighbor PSO with the Tikhonov Regularization to calculate the electrical sources
on the heart. In contrast to what is found in the literature (Ramanathan and Rudy
2001), in our approach we reconstruct the membrane potential over the volume of the
heart instead of the extracellular potential on the surface, without using any a priori
information or a database. The membrane reconstructed potential is the responsible
of the electrical activity of the heart, and has important information that could be
used in diagnostics. For example in Ischemia the membrane potential has a different
profile, and using our approach this point could be identifiable. Another advantage
is that the two step algorithm uses a quasi-static approach, numerically, each time
step can be solved independently. This allows the system to be parallelized. It is
noteworthy that although the proposed approach was used for fundamental solution
of Laplace, more suitable equations can be found to describe the electrical activity
of the heart, and could be easily substituted in the method.
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to solve geophysical inverse problems: Application to a 1D-DC resistivity case. Journal of Applied
Geophysics 71(1):13 – 25.
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Abstract. Graph Coloring, one of the most challenging combinatorial problems,
finds applicability in many real-world tasks. In this work we have developed a
new artificial bee colony algorithm (called O-BEE-COL) for solving this prob-
lem. The special features of the proposed algorithm are (i) a SmartSwap mutation
operator, (ii) an optimized GPX operator, and (iii) a temperature mechanism. Var-
ious studies are presented to show the impact factor of the three operators, their
efficiency, the robustness of O-BEE-COL, and finally the competitiveness of O-
BEE-COL with respect to the state-of-the-art. Inspecting all experimental results
we can claim that: (a) disabling one of these operators O-BEE-COL worsens the
performances in term of the Success Rate (SR), and/or best coloring found; (b)
O-BEE-COL obtains comparable, and competitive results with respect to state-
of-the-art algorithms for the Graph Coloring Problem.

Keywords: Swarm intelligence, artificial bee colony, graph coloring problem, com-
binatorial optimization

1 Introduction

Graph coloring is one of the most popular and challenging combinatorial optimization
problems, playing a central role in graph theory. It can be formalized as follow: given an
undirected graph G = (V,E) a coloring of G is a mapping c : V → S (⊆ ℵ+) that as-
signs a positive integer to each vertex in V such that c(u) 6= c(v) if u and v are adjacent
vertices. The elements in S represent the available colors. The optimization version of
Graph Coloring Problem (GCP) asks to find a mapping c with S = {1, 2, . . . , k} being
of minimal size, i.e., finding the smallest integer k such that G has a k− coloring. This
minimal cardinality of S is known as the chromatic number of G (χ(G)). Thus for-
mally, if k > χ then a graphG is called k−colorable, otherwiseG is k−chromatic if
k = χ. Computing the chromatic number of a graph is an NP–complete problem [17].
Tackling and solving the GCP becomes crucial and important since it has a natural
applicability in many real-world problems, such as scheduling [26], time tabling [12],
manufacturing [19], frequency assignment [16], register allocation [8] and printed cir-
cuit testing [18]. The GCP can be tackled following two different approaches: assign-
ment or partitioning. The first approach consist in the classical assignment of colors to
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vertices; whilst the latter one is based on partitioning the set of vertices V into k dis-
joint subsets (V1, V2, . . . , Vk) such that in any subset no two vertices are linked by an
edge, i.e. if u and v are in Vi (for some i ∈ {1, . . . , k}) then (u, v) /∈ E. Every subset
Vi represents a color class and forms an Independent Set of vertices. Although several
pure population–based algorithms have been used to tackle the GCP, a hybrid approach
where local search methods, specialized operators and evolutionary algorithms (EAs)
are combined [25] might be more effective. This is, of course, due to the intractable
nature of the GCP [5].

In this work we propose an Artificial Bee Colony (ABC) [24] algorithm for the GCP,
based on three main features: (1) a new mutation operator, (2) an optimized version
of the Greedy Partitioning Crossover (GPX) [15], and (3) a temperature mechanism.
The ABC algorithm is a rather recent optimization technique inspired by the intelligent
foraging behavior of a colony of bees, whose strength lies in the collective behavior of
self-organized swarms that individually behave without any supervision. During the last
decade, ABC has attracted quite a number of researchers, and it has been successfully
applied mainly to continuous optimization problems [23, 3], whilst, rather few works
have appeared concerning discrete optimization problems (see, for example, [27, 31]).
In many cases the results obtained by ABC, including the ones of this work, demon-
strate that this metaheuristic is able to compete with, and sometimes even outperforms,
existing state-of-the-art algorithms for difficult optimization problems.

2 O-BEE-COL: An Artificial Bee Colony

The ABC algorithm takes inspiration from the intelligent foraging behavior of bees
from a bee hive. It is based on three main components: (1) food source position, cor-
responding to a feasible solution to the given problem; (2) amount of nectar, which
indicates the quality of the solution; and (3) the bee types: employed; onlooker; and
scouts bees. The first ones have the purpose to search for food sources, and, just found,
storing their information. The onlooker bees select, and exploit the better food sources
found taking advantage of the information learned from employed bees. Once one of
the food sources is exhausted, the employed bees associated with it become scout bees,
with the purpose to discover new food sources. Once discovered, they become again
employed bees.

A new ABC heuristic has been developed in order to effectively coloring a generic
graph. This algorithm is henceforth referred to as “Optimal BEEs for COLoring” (O-
BEE-COL). The algorithm begins with the creation of the initial population, where
each bee represents a permutation of vertices. Because the choice of the starting points
in the search space become crucial we have designed, and studied, three variants of
O-BEE-COL in order to create the initial population. In the basic variant, it is ran-
domly generated via a uniform distribution. The second variant, instead, uses a version
partially randomize of RLF (Recursive Largest First) algorithm [10]. Of course, as ex-
pected, with this last variant O-BEE-COL shows better performances, because it begins
the search from good solutions than the first variant. On the other hand, however using
this second variant we have the disadvantage to get trapped into local optima easily,
mainly in more complex instances. Thus, we have developed a third variant that is a
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mixed of the two previous ones. In this way, we introduce more diversity in the popu-
lation in order to better exploration the search space, escaping from local optima, and
exploiting good solutions at the same time. Analyzing the comparisons among the three
variants (not included in this paper due to limited space), the mixed one has produced
the best performances obtaining better coloring in all instances tested. For example, if
we take into account the “le450 15c” DIMACS instance [22], using the first variant the
algorithm starts from a best solution found of 28 colors and improves the coloring until
to reach a solution with 20 colors. Instead with the randomized RLF, although O-BEE-
COL begins from 24 colors as best solution, it never improves this coloring found. If,
however, O-BEE-COL incorporates the mixed variant, starting from a best solution of
24 colors (the one found by randomized RLF), at the end of the evolution it is able to
coloring the graph with 15 colors, which is also the chromatic number for this instance.

The strength of O-BEE-COL is based on three main operators: mutation operator
called SmartSwap; optimized version of GPX [15]; and Temperature mechanism, as in
Simulated Annealing, which has the aim of self-regulating of some parameters of the
algorithm. The mutation operator tries to reduce the number of color classes deleting
one of them, and reassigning its vertices inside other classes. Albeit is reasonable to
think that this process might be easily performed in the smaller class, unfortunately of-
ten belong to it the most troublesome nodes, i.e. the ones harder to be handled. Thus,
SmartSwap works primarily on these troublesome nodes with the aim to replace them
with the ones more easy to be handled. In this way becomes easier the reassignment of
the vertices, and therefore the delete of the class. To do that, SmartSwap allows a fixed
number of constrains unsatisfied, which will be removed via the crossover operator:
only partLimit constraints unsatisfied are allowed. With this operator we attempt to
avoid that the solutions get trapped into local optima. Greedy Partitioning Crossover –
GPX – is a well-known crossover originally proposed in [15], and based on strategy of
considering more important the set of the vertices that belong to the same class rather
than the colors assigned to each vertex. Via a round robin criterion two bees are se-
lected for generating one offspring: the biggest colorclass of the two selected parents
is copied into the new solution, and its vertices are removed from the color classes of
the belonging parent. This process is performed until classes with only one vertex are
encountered. In this case, the single node is inserted inside one of the existing classes.
In O-BEE-COL we have designed an optimized version of GPX, which differs from the
original one basically in two aspects: (1) the number of solutions involved is determined
by a parameter partSol; and (2) the cardinality of the colorclasses that must be copied
into the new solution is determined by a parameter (partLimit). All colorclasses with
cardinality greater or equal to partLimit will be copied inside the new solution. In this
way, we want to force the transmission only of the best colorclasses to the offsprings.
An experimental study conducted on the optimized GPX, also respect to the original
one, confirmed us how these novelties introduced contribute significantly better on its
performances (see plots in figure 3). The third novelty introduced in this work is the
design of a Temperature mechanism that has the aim to dynamically self-handle some
parameters during the evolution. The parameters bound to this self-regulating mecha-
nism are: (1) number of parents involved in optimized GPX (partSol); (2) number of
the improvement trails needed before to replace a solution (evLimit); (3) number of
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scout bees (nScouts); and (4) percentage of solutions that must be generated by ran-
domized RLF during the scout bees phase (percSol). Whenever a better solution than
the current one is found, the temperature mechanism sets the controlled parameters with
their highest possible values, respectively [100, 20, 5, 100%]. During the evolution, if no
improvements occurred, then these values gradually decrease generation to generation
until to reach their minimal values, which correspond to [10, 5, 2, 10%].

3 Results

In order to understand how the developed algorithm works, and how much is the con-
tribution given by the novelties introduced we have performed many experiments using
the classical DIMACS challenging benchmark3. O-BEE-COL has been tested on 22 in-
stances (the most used), and it was compared with several algorithms, which represent
the current state of the art for graph coloring problem. In this section we present all
studies and experiments conducted, showing best tuning of the parameters; the impact
factor contribution of the novelties designed; analysis on the running time; and compar-
isons conducted versus several algorithms. In most of the instances tested O-BEE-COL
has found the best coloring, showing a robust convergence, and very competitive per-
formances with respect the state of the art.

O-BEE-COL dynamics. One of the main goal when someone designs a generic EAs
is to understand which is the best setting of the parameters because they strongly influ-
ence the performances of the algorithm. Thus many experiments have been performed
with the aim to identify the best values of the parameters. As described in section 2, O-
BEE-COL depends on three parameters: population size (popSize ∈ {200, 500, 1000,
1500, 2000}) ; the lowest cardinality of the color classes allowed to be transmitted
during the partitioning phase (partLimit ∈ {5, 10, 15, 18}) ; and the percentage of
Employed Bees (percEmp ∈ {10%, 20%, 50%, 70%, 90%}) . To carefully analyze
the proper tuning of the parameters, we conducted our study over several DIMACS
instances, and for each combination of values we performed 10 independent runs. In
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Fig. 1. Convergence behavior at varying the parameters: popSize, partLimit, and percEmp.

3 http://mat.gsia.cmu.edu/COLOR/instances.html

282



5

Table 1. Operating variants of O-BEE-COL, where k̂ is the mean of the best colors found; k is
the best coloring found in all runs; SR is the success rate, and AES is the average number of
fitness function evaluations to the solution.

variant SmartSwap Crossover Temperature k̂ k SR AES

1 on opt GPX on 15 15 100% 5, 972, 925
2 on GPX on 24 24 100% 1, 503, 756
3 on opt GPX off 17, 8 15 40% 36, 599, 035
4 on GPX off 25 25 100% 5
5 off opt GPX on 15, 9 15 50% 25, 981, 420
6 off GPX on 24 24 100% 1, 639, 403
7 off opt GPX off 19, 9 17 20% 15, 872, 834
8 off GPX off 25 25 100% 4

figure 1 we show the convergence of O-BEE-COL on the instance DSJC250.5 since it
is challenging enough to make robust our study. Inspecting all 100 experiments over
this instance, O-BEE-COL obtains the best performances in term of success rate (SR)
with the combination (200, 5, 10%). Due to a limit space, we show for each parameter
the convergence plots produced in combination with the other two best values. Ana-
lyzing the left plot (varying popSize) is possible to see how with large population size,
O-BEE-COL quickly gets down towards low values within few generations, after which
it shows a steady-state. On the other hand, choosing small dimensions, albeit the algo-
rithm needs more generations, it achieves still the best coloring. However, inspecting
step-by-step the convergence for each value, popSize = 200, although is the slow-
est, it is the one that performs a better exploration of the search space with the result
of producing a good trade-off for diversity into the population. In the middle plot, are
shown the convergence curves produced varying the parameter partLimit. The lower
bound to the color classes transmitted during the partitioning phase is the one that con-
tributes most to the convergence speed of the algorithm, and it usually assumes values
within the range

(
2, |V |χ

)
. In particular, assigning partLimit = 5, O-BEE-COL has

a slower convergence but it reaches the best solution before than the others. In the
right plot, and last of figure 1, is shown the contribution given by percEmp, which
indirectly represents the exploitation phase of the best solutions found so far. For all
curves, O-BEE-COL shows a good trend without presenting fast or slow convergences.
Comparing the curves between them is possible to see how O-BEE-COL with low per-
centage of employed bees is able to better explore the search space, and, at the same
time, exploit better the information gained so far. In fact, with the lowest percentage
possible (percEmp = 10%) the algorithm achieves the best solution before than the
others. It is important to point out how the best values for the three parameters corre-
spond to their minimal values tested. This indicates us that there exists a good balance
of diversity into the population, which helps the algorithm to get out from local optima.

Several experiments have been conducted on the instance le450 15c in order to
prove the effectiveness and utility of the features introduced in O-BEE-COL in terms
of number of colors found; success rate; and average number of fitness function evalu-
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ations to the solution (AES). The aim of these experiments is to show that whatever the
operators’ combination chosen if we inhibit one of them, then its outcome will be neg-
atively affected by this move. In table 1 we show for any possible combination the av-
erage of the colors found (k̂), best coloring found (k), SR and AES. In the next figures
(fig. 2, fig. 3, and fig. 4) we show a comparison of the several possible cases gradually
disabling all the aforementioned features. The experiments have been averaged over 10
runs with different seeds. In the left plot of figure 2, we present the comparison of the
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Fig. 2. Experimental analysis on the benefits provided by SmartSwap mutation operator.

convergence speed of O-BEE-COL with and without the SmartSwap operator (variants
1 and 5 of table 1). It is possible to see how the first variant managed to reach the χ
of the instance in every execution (SR = 100%), whilst turning off the SmartSwap
operator, O-BEE-COL is able to get the best coloring only in 50% of the executions.
Middle plot shows a version of the algorithm that does not use the temperature mech-
anism. If we disable also the SmartSwap operator (variant 7) the algorithm reaches an
average of colors (k̂) equal to 19.9, and the best result of 17 colors during all the exe-
cutions; whilst using the mutation operator (variant 3) O-BEE-COL manages to reach
the chromatic number in 40% of the cases, with k̂ = 17.8. The right plot of the figure
illustrates the contribution given by SmartSwap if instead we make use of the original
GPX in O-BEE-COL (variants 2 and 6). Looking this plot is very clear as both vari-
ants are not particularly efficient. The variant using the mutation operator (2nd variant)
manages to achieve an average of colors of 24, whilst the one that not using it (6th vari-
ant) is not able to do better than 25. These three plots of figure 2 prove the usefulness of
SmartSwap, and its benefits that affect positively on the overall performances, regard-
less on the operators combination enabled. The plots in figure 3 prove the real goodness
of the optimized GPX proposed with respect to the original version [15] improving
significantly the performances of O-BEE-COL. The first plot on the left, presents a
comparison of the speed convergences of O-BEE-COL using the proposed optimized
crossover (1st variant) versus the original one (2nd variant). This comparison has been
done on the fully enabled version of O-BEE-COL. The same comparison has been
made also for the versions where the two other operators have been disabled (7th and
8th variants), and it is shown in the second plot on the left of the figure. Looking both
plots, becomes very clear as the developed optimized version to equality of variant out-
performs significantly the original one. The last two plots in figure 3 show respectively
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Fig. 3. Experimental analysis on the benefits provided by optimized GPX.

the analysis conducted when we turn off the temperature mechanism (penultimate plot),
and SmartSwap mutation operator (last plot). The role played by the optimized GPX is
clearly evident even in these plots. In particular, disabling the Temperature mechanism
or SmartSwap operator, O-BEE-COL with the original version of GPX is not able to
achieve a coloring with less than 25 colors; whilst with the designed GPX version O-
BEE-COL performs better decreasing the colors number in average to k̂ = 17.8 (with
only temperature enabled) and k̂ = 15.9 (with only mutation operator enabled). Finally
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Fig. 4. Experimental analysis on the benefits provided by Temperature mechanism.

in figure 4 we show the improvements produced, in using the temperature mechanism,
which controls dynamically the values of some parameters. In the left plot of figure 4
is plotted the difference concerning of O-BEE-COL with, and without the temperature
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mechanism. In both variants the algorithm achieves successfully the chromatic number,
χ = 15 (see table 1). However, whilst the fully enabled version is able to achieved
always the chromatic number (variant 1), when this operator is turned off (variant 3)
the algorithm manages to achieve the best coloring only in 40% of the executions. In
middle plot the two different versions of the algorithm make no use of the mutation
operator. When the temperature mechanism is enabled (5th variant) the algorithm finds
the optimal coloring in one out of two cases (k̂ = 15.9), whilst the other combination
(7th variant) does not manage to do better than a 17-coloring (k̂ = 19.9). The right plot
shows the behavior of the algorithm using the classical version of GPX (2nd variant vs.
4th). Despite the poor performances, O-BEE-COL obtains a slightly better result when
using the temperature mechanism (variant 2). In the overall, inspecting all combinations
in table 1 is possible to claim that the Temperature mechanism developed is the one that
gives a positive greater contribution with respect to SmartSwap mutation operator.

Time-To-Target plots [1] have been used for studying the running time of O-BEE-
COL, comparing the empirical and theoretical distributions. They represent a classical
tool for characterizing the running time of stochastic algorithms in order to solve a
specific optimization problem. In particular, we have used a Perl program proposed
in [2], which display the probability that an algorithm will find a solution as good
as a target within a given running time. Through this program two kinds of plots are
produced: QQ−plot with superimposed variability information, and superimposed em-
pirical and theoretical distributions. This kind of analysis has been conducted on the
instances School1 and DSJC250.1, performing 200 independent runs for each instance.
The produced plots are shown in figure 5 (1st and 3rd plots for the first instance; 2nd
and 4th plots for the last). The plots show how for O-BEE-COL the empirical curve
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Fig. 5. Time to target plots for O-BEE-COL. The values have been obtained over 200 executions
of the algorithm, respectively on the instance School1 (1st and 3rd) and DSJC250.1 (2nd and
4th).

perfectly fits the theoretical one in both instances, except for very few worst cases (first
two plots on the left). In the quantile-quantile plots, the O-BEE-COL results are in most
of the cases equal to the theoretical ones, albeit a few less in DSJC250.1 instance. This
is explained because this last instance is more complex than the other one.

Experimental Comparisons. In order to evaluate the overall performances of O-BEE-
COL, we have performed several experiments using the most known instances of the
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DIMACS benchmark [22]. The results in term of coloring found, SR obtained and
AES needed are showed in table 2. In this table we report for each instance its com-
plexity characteristics; the chromatic number (χ); the best coloring known in literature
(k∗); the best colors number found by O-BEE-COL (k), with SR and AES obtained.
Each experiment has been performed on 10 independent runs. Inspecting such ta-

Table 2. Experimental results on DIMACS benchmark instances [22, 11].

Graph | V | | E | χ k∗ k SR AES
DSJC125.1 125 736 5 5 5 50% 528, 715.6
DSJC125.5 125 3, 891 12 17 17 10% 464, 633.0
DSJC125.9 125 6, 961 30 42 44 100% 29, 817.4
DSJC250.1 250 3, 218 8 8 9 100% 252, 538.7
DSJC250.5 250 15, 668 13 28 29 100% 471, 823.0
DSJC250.9 250 27, 897 35 69 73 90% 24, 403, 325.4
le450 15a 450 8, 168 15 15 16 100% 17, 678, 139.9
le450 15b 450 8, 169 15 15 16 100% 6, 188, 035.6
le450 15c 450 16, 680 15 15 15 100% 5, 972, 925.6
le450 15d 450 16, 750 15 15 15 80% 18, 630, 401.3
flat300 20 300 21, 375 20 20 20 100% 4, 800
flat300 26 300 21, 633 26 26 26 100% 72.9K
flat300 28 300 21, 695 28 28 31 20% 5.6M
Queen5 5 25 320 5 5 5 100% 1.9
Queen6 6 36 580 7 7 7 100% 1, 741.66
Queen7 7 49 952 7 7 7 100% 6, 636.84
Queen8 8 64 1, 456 9 9 9 100% 22, 107.25
Queen8 12 96 2, 736 12 12 12 100% 1, 212, 000.35
Queen9 9 81 1, 056 10 10 10 100% 31, 243.28
School1.nsh 352 14, 612 14 14 14 100% 1, 703.28
School1 385 19, 095 14 14 14 100% 821.5

ble, O-BEE-COL performs well on all instances queen and school finding the optimal
coloring with a success rate of 100%. On the class of the instances DSJC, instead, O-
BEE-COL seems to have more difficulty in getting the best coloring known, except for
DSJC125.1, where it manages to find the optimal solution in only 5 tests out of 10,
and for DSJC125.5 where only in one case out of 10 the algorithm finds a 17-coloring.
On the instances DSJC250.1 and DSJC205.5, instead, the algorithm finds as best so-
lution a coloring with only one color in more; whilst for the instances DSJC125.9 and
DSJC250.9 the difference with the best coloring known is of 2 and 3 colors respec-
tively. The same performances are achieved also in le450 15 family, where O-BEE-
COL achieves the chromatic number in le450 15c and le450 15d instances, whilst for
the other two its solution differs from the chromatic number only for one color in more.
Finally, in flat300 20 and flat300 26 O-BEE-COL founds the chromatic number pro-
ducing a success rate of 100%, whilst in the last instance, flat300 28, it reaches a 31-
coloring in 2 cases out of 10, where the chromatic number is however 28.

In table 3 we present a comparison of O-BEE-COL with 6 different algorithms for
the graph coloring problem, 4 of which nature-inspired: HPSO [30]; HCA [15]; GPB
[20]; VNS [4]; VSS [21]; ANTCOL [13] (see the relative publications for major de-
tails). The best results are highlighted in boldface. Inspecting this table is possible to see
how the performances of O-BEE-COL are competitive with the compared algorithms,
achieving in all tested instances the best coloring except in DSJC250.5. Moreover, albeit
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Table 3. O-BEE-COL versus six different algorithms for graph coloring problem, with respect
the best coloring found. The best results are highlighted in boldface.

Graph O-BEE-COL HPSO HCA GPB VNS VSS ANTCOL

DSJC250.5 29 28 28 28 - - 28
flat300 26 26 26 - - 31 - -
flat300 28 31 31 31 31 31 29 31
le450 15c 15 15 15 15 15 15 15
le450 15d 15 15 - - 15 15 -

on flat300 28 the VSS algorithm has found the lower number of colors, O-BEE-COL
achieves yet the same results as all others.

Table 4. O-BEE-COL versus state-of-the-art for graph coloring problem, with respect the best
coloring found. The best or equal coloring obtained by O-BEE-COL is highlighted in boldface.

Graph O-BEE-COL IMMALG MACOL IGrAl ACS FCNS IPM ABAC LAVCA TPA AMACOL
DSJC125.1 5 5 5 5 5 5 6 5 5 5 5
DSJC125.5 17 18 17 17 17 18 19 17 17 19 17
DSJC125.9 44 44 44 43 44 44 45 44 44 44 44
DSJC250.1 9 9 8 8 8 − 10 8 8 8 8
DSJC250.5 29 28 28 29 29 − − 29 28 30 28
DSJC250.9 73 74 72 72 73 − 75 72 72 72 72
flat300 20 0 20 20 20 − 20 − − − − − −
flat300 26 0 26 27 26 − 32 − − − − − −
flat300 28 0 31 32 29 − 32 − − − − − −
le450 15a 16 15 15 15 16 − − 15 15 15 15
le450 15b 16 15 15 15 16 − 17 15 15 15 15
le450 15c 15 15 15 16 15 − 17 15 15 15 15
le450 15d 15 16 15 16 15 − − 15 15 15 15
Queen5 5 5 5 − 5 − − − 5 − − −
Queen6 6 7 7 − 7 7 − − 7 − − −
Queen7 7 7 7 − 7 7 − − 7 − − −
Queen8 8 9 9 − 9 9 9 9 9 − − −
Queen8 12 12 12 − 12 12 − − 12 − − −
Queen9 9 10 10 − 10 10 10 10 10 − − −
school1 nsh 14 15 14 14 14 − − 14 − − −
School1 14 14 14 14 14 − − 14 − − −

In table 4, O-BEE-COL is compared with other 10 algorithms: IMMALG [11, 28],
MACOL [33], IGrAl [7], ACS [9], FCNS [29], IPM [14], ABAC [6], LAVCA, TPA and
AMACOL [32]. The comparison has been performed with respect to the best coloring
found. We have highlighted in boldface the colors found by O-BEE-COL, which are
better or equal to the ones compared. Due a limit space, we refer the reader to each
publication for more details on the algorithms. Also on these experiments is possible to
see how O-BEE-COL is comparable with the state-of-the-art achieving the best coloring
in 14 instances over 21. In the remaining instances nevertheless it isn’t the worst.
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4 Conclusion

In this research paper we have developed a new Artificial Bee Colony heuristic, called
O-BEE-COL, for the graph coloring problem. The novelties introduced in O-BEE-COL
are basically: (1) SmartSwap mutation, which attempts to reduce the number of color-
classes, working primarily on the troublesome vertices; (2) optimized version of GPX,
which works as multi-parents operator, forcing the transfer of the best colorclasses to
the offsprings; and a (3) Temperature mechanism, which has the aim to dynamically
handle some parameters.

Many experiments have been performed with the primary aim to evaluate the con-
tribution, and benefits given by these new operators. Thus, all possible combinations of
these three operators have been taken into account, and have been tested; the obtained
results prove us how inhibiting one of them the overall performances are negatively
affected. In particular, we show, via figures, the significant improvements produced by
the optimized version of GPX, and as the Temperature mechanism is the one that gives
a greater positive contribution, respect to the SmartSwap operator. Via Time-To-Target
plots are also analyzed the running times of O-BEE-COL, comparing the empirical and
theoretical curves. Finally, a comparison with the state-of-the-art has been conducted as
well, in order to evaluate the robustness and efficiency of O-BEE-COL. Inspecting all
results, and comparisons O-BEE-COL shows efficiency; robustness; and very competi-
tive performances, achieving in the most of the instances the chromatic number, or the
best coloring known.
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